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DID  YOU  KNOW ? 
Today we know that the universe is expanding and the rate of expansion is increasing. The current explanation is that there is 
a mysterious force stretching the space-time fabric of the universe. Scientists have named this mysterious force Dark Energy.  
Around 1917 Einstein published a paper in which his field equations showed the possibility of an expanding universe. Now 
Einstein did not believe in an expanding universe yet he saw no errors in his equations. So he added a “cosmological 
constant” (often referred to as his fudge factor) to his equations, resulting in a static universe. In 1922, Alexander Friedman, a 
brilliant Russian mathematician, published his paper on the solution of Einstein’s general relativity field equations. His 
solution showed an expanding universe. Friedman was not aware of Einstein’s previously published paper with the added 
“cosmological constant.” Einstein’s paper was slow to be published in Russia due to the Russian revolution and World War I. 
Einstein responded to Friedman’s paper by saying Friedman was wrong. Friedman responded by asking Einstein for a “show 
me” explanation. Upon further study, Einstein agreed with Friedman and admitted the error in his own equations. Edwin 
Hubble discovered in 1929 that the universe is expanding whereupon Einstein rejected his idea of a “cosmological constant” 
and called it the greatest scientific blunder in his career. Today scientists are using Einstein’s “fudge factor” in cosmological 
equations to explain the effects of Dark Energy.   
 

RMS  Revisited 
 
Preamble 
When we purchase electrical equipment, 
appliances, light bulbs, motors, heaters and 
such, somewhere on the “name plate” are some 
electrical specifications such as voltage, current, 
frequency, power, etc. We have seen these 
values for as long as we have been able to read 
and so we just take them for granted. For AC 
(the abbreviation for alternating current), the 
values for voltage and current are always shown 
as “RMS” values; however, this fact is rarely 
stated on the name plate. It is assumed everyone 
knows this. 
 
What does RMS really mean? This Application 
Note will revisit the definition of RMS, show 
RMS values for various time functions, and 
explore some interesting RMS measurement 
issues. Our object here is to provide a better 
understanding of some of the subtle 
characteristics of RMS. However, reviewing 
RMS values for time functions containing 
random components is beyond the scope of this 
Application Note. 
 
The Appendix contains additional information 
for your reference, and the reader is encouraged  

to examine the previous Dataforth Application 
Note on RMS, AN101. 
 
RMS Definition Revisited 
Throughout this Application Note, we will 
consider only periodic functions with no random 
components. The way to think of the RMS value 
for a time varying function of voltage or current 
is to recognize that an RMS value for these time 
varying items means that the time varying 
function has the same energy capacity as some 
value of DC (abbreviation for direct current) 
voltage or current.  
  
The derivation of RMS begins with the 
requirement that the function of time is “well” 
behaved (bounded with a finite number of 
discontinuities), repetitive at some fundamental 
frequency, and available for as long as needed. 
A pure mathematician might cringe at these 
simple requirements but we engineers love them 
because they apply to most types of voltages 
and currents we deal with in practice.  
 
The experimental apparatus is a pure resistive 
heating element within a perfectly thermally 
insulated container. An ideal DC voltage (say 10  
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volts) is connected to this heater until thermal 
equilibrium is reached with a final temperature 
of say Tx degrees. 
 
Next, this DC voltage is removed, the unit is 
allowed to cool down, and a time varying 
voltage, V(t), is applied to the heater until 
thermal equilibrium is again reached with a final 
temperature of, say, Ty degrees. If Ty = Tx, 
then the effective value of V(t) = 10 volts (same 
as the previous DC value) and so we say the 
RMS value of V(t) is effectively 10 DC volts. 
Why the name RMS? The name comes from the 
mathematics of this experiment as follows: 
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Effective value  RMS 

 

A careful look at this mathematical equation 
shows that it is the Root of the Mean (average) 
value of V(t) Squared. Hence, the name RMS. 
 
RMS Examples 
Perhaps the most familiar time function is the 
sinusoidal function. Recall that a sinusoidal 
function can be described as a sine function or 
cosine function depending on where we choose 
to place the time origin. As you know, the utility 
companies go to great lengths to ensure the 
voltage on their power grid distribution system 
is a sinusoidal voltage function. Consequently, 
the RMS value of sinusoidal functions of time is 
the dominant focus in most introductory electric 
circuit courses and little time is spent on 

determining RMS values for unusual shaped 
functions of time.   
 
Most of us recall the RMS of a sinusoidal 
function as:  
 

Sinusoidal Peak ValueRMS = 
2

 
 

For example, consider the name plate 
specifications of a toaster showing 120VAC, 
60Hz. This means the actual utility line voltage 
out of the wall socket is a 60Hz sinusoidal 
voltage function with a peak value of 169.7 
volts. This utility supply voltage function of 
time is commonly expressed by either of the 
following sinusoids: 
 
v(t) = 169.7*Sin(2* *60*t)
v(t) = 169.7*Cos(2* *60*t)

π
π

 

 
All this is well and good but the fact is there are 
scores of other functions of time that we need to 
measure that are nowhere near sinusoidal. So 
what about these? As an example, consider non-
linear loads on the utility’s fixed sinusoidal 
voltage line; the load currents will in no way be 
sinusoidal but we need to measure them 
nonetheless.  

The Equation, RMS = Peak
2

  does not work. 

 
Table 1 (page 7) illustrates some common non-
sinusoidal time functions and their associated 
RMS values. Take a look, you may be surprised.  
 
Parceval’s Theorem 
Parceval’s Theorem is a handy trick to know. 
As an illustrative example of using this theorem, 
consider the situation where an auxiliary 
emergency backup generator is connected to a 
facility. It is possible for such generators to 
create sinusoidal harmonics on the customer’s 
supply lines. Sometimes such generator’s 
specifications give the harmonic content.  
Figure 1 illustrates a situation where the 
composite voltage is a sum of four different 
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RMS voltages, one at a fundamental frequency, 
one at the third harmonic, one at the fifth 
harmonic, and a DC average. 
 

 
                         Figure 1 
         Composite Wave Function 
 Black curve frequency fo = 60, 120VAC 
           Orange curve frequency 3*fo = 180, 20VAC 
           Blue curve frequency 5*fo = 300, 50VAC 
           Dashed Black is DC = 30VDC 
           Red curve is the sum  
 
So what is the RMS value of the RED function 
of time? Do you want to write an equation for it 
and use Eqn. 1? Well, we could but it would be 
messy so instead let us use Parceval’s Theorem, 
which says that for a composite function 
composed of different functions, the RMS value 
can be calculated by the following: 
 

2

2 2

all n

2 2 2

RMS = RMS  of each f(t) + DC Eqn. 2

For Figure 1

RMS = 120 +20 +50 +30   = 135Volts

  ∑

  
Remember that it is common practice to give AC 
voltages as their RMS values and that the RMS 
of a DC voltage is the DC value. 
 
We will show more practical examples of 
Parceval’s Theorem later on when we use the 
Fourier Series to calculate RMS. 
 

Measuring RMS 
Any module that measures the RMS value of a 
time varying function must, in general, 
implement Eqn. 1 (page 2). The modern 
techniques and circuit topologies of such 
devices are far beyond the scope of this 
Application Note. Moreover, most vendors of 
such devices consider their methods to be 
intellectual property (IP) and do not publicize 
their circuits and embedded software (if any). 
Companies that supply RMS modules use 
various implementations of Eqn. 1 ranging from 
simple analogy circuit topologies to 
sophisticated digital sampling with Digital 
Signal Processing (DSP) microprocessors 
running special software algorithms. However, 
as a selection aid, device specifications are 
always provided. 
 
For example, Dataforth RMS Measurement 
Modules provide specifications that include: 
 
1. Component Drift 
2. Component Aging 
3. Temperature Variation 
4. Supply Voltage Variation 
5. Humidity  
6. Circuit Linearity 
7. Circuit Repeatability and Hysteresis 
8. Common Mode Voltage Rejection 
9. Transient Protection 
10. Frequency Response 
11. Crest Form Factor  
 
Most readers are familiar with the analog 
specifications 1-9 and how they apply to their 
specific requirements; therefore, we will not 
dwell on these in this Application Note. 
However, Frequency Response and Crest Factor 
(Form Factor) specifications may need a little 
additional   examination.  
 
Non-Sinusoidal Measurement Example 
As a typical example of a non-sinusoidal time 
function, consider the situation in which a 60Hz 
utility supply is connected to a non-linear load. 
We will use for illustration purposes a full wave  
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bridge rectifier as the non-linear load. Industrial 
facilities have speed drive for induction motors, 
controllers for DC motors, welders, and large 
dimmer units. In general, all these have within 
their circuit topology some form of AC to DC 
converter and may or may not have an input line 
filter. 
 
Figure 2 shows the typical wave forms in this 
situation.  
 

 
 
                                    Figure 2 
Wave Functions in a Full Wave Bridge Rectifier  

Blue: Output DC with Ripple 
Black: Utility 60Hz Supply Line 
Green: Current on 60Hz Supply Line 

 
Notice that the output is a DC voltage with a 
rippling value at 120Hz riding on top of an 
average (DC) value. Perhaps most surprising is 
the green line current pulse shaped like a saw-
tooth with a frequency at twice the line 
frequency, 120Hz. So what is the RMS value of 
this current pulse? 
 
The Fourier Series 
Recall Fourier’s theorem, which says that a 
function of time “f(t)” can be expressed as a 
sum of sine and cosine functions over an infinite 
number of frequencies plus an average value 
term. At this point, a mathematician would 
hasten to give us all the limitations for this 
theorem; however, most engineering voltages 

and currents we work with are “well” behaved 
and Fourier’s theorem applies. The following 
form of this theorem will allow us to 
demonstrate the effects of frequency on RMS 
measurements. 
 

T

0 0 0
0

T

0 0 0
0

0

0 0
all  n

* f(t)*Cos(2*π*n*f *t)        T=1/f

bn = * f(t)*Sin(2*π*n*f *t)          T=1/f

* .....

                           .... + bn*Sin(2*π*n*f *t)]
Where;

f(t) = A  + [an*Cos(2*π*n*f t) 

an = 2*f

2*f

dt

dt

∫

∫

∑

0

T

0
0

Ao  =  Average DC value    T = 1/f* f(t)f dt∫

 

Note that “f0” is the signal “f(t)” frequency and 
that “an” is the peak amplitude of the “nth” 
Cosine harmonic and “bn” is the peak 
coefficient of the “nth” Sine harmonic. 
Remember that a non-sinusoidal time function 
contains many (infinite number in theory) 
different frequency harmonics. We can use this 
fact to calculate the RMS of non-sinusoidal time 
functions by using Parceval’s Theorem for 
RMS, which is: 
 

2 2
2

0
all  n

Eqn. 3an bnRMS = A + +
2 2

 
 
 

∑  

Recall, RMS is Vpeak ÷ square root 2. 
 
We hasten to point out that all this is interesting; 
however, the shape of a time function whose 
RMS value we wish to measure is seldom, if 
ever, known. So what is the value of this nasty 
math? From a practical point of view we rarely 
use this analysis to actually calculate RMS since 
the equation for the quantity we wish to measure 
is unknown. However, we are going to use this 
analysis in examples to illustrate the frequency 
requirements of measuring non-sinusoidal 
functions and therein lies the value of this nasty 
math.  
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Example 1 
Figure 2 (page 4) shows the actual 60Hz line 
current in typical industrial equipment 
containing bridge rectifiers. This green line 
current approximates a sawtooth wave form.  
 
To partially simplify the mathematical 
calculations, we will model this sawtooth 
function as: 

w

w

w 0

ti(t) = Imax* 1- Eqn.4
t

Where t = base line pulse width and is  
defined by % Duty Cycle  %D = t *f *100

 
 
 

 

See Table 3 in Appendix 3 (page 14). 
 
The pulse shape and specifically the pulse width 
“tw” is determined by the load resistance, the 
filter capacitance, and the supply frequency. 
Figure 8 (Appendix 2, page 13) shows an 
example of how pulse widths can vary with load 
resistance for several given filter capacitances. 
The model used here (shown above) is 
sufficiently accurate to illustrate our objective, 
which is to show the effects of frequency 
content in this common type non-sinusoidal line 
current. Remember that “f0” is the driving 
source frequency (60Hz in this example) not the 
pulse frequency.  
 
Reexamine the bipolar sawtooth line current 
function shown as green in Figure 2. The graph 
in Figure 4 (page 8) illustrates how RMS 
%Error as a function of base line pulse width 
expressed as Duty cycle varies with different 
“n” numbers, i.e. frequency components.       
 
Note Results in Figure 4 

1. For any given number of frequency 
harmonics (n value) the RMS %Error 
decreases as %D increases, that is as tw 
increases RMS %Error decreases for any 
given n. 

2. For any pulse width tw given as %D, the 
RMS %Error decreases as number of 
frequency harmonics (n) increases. 
 

The nasty math in this example shows the 60Hz 
line current RMS %Error for 30 %D and 300 
frequency components is -0.0845%. However, 
to achieve this accuracy (at 30 %D and n = 300) 
requires the measurement device to have a 
frequency response in excess of 18,000Hz 
(60*300).  
 
Example 2 
The second entry #2 of Table 1 (page 7) 
illustrates a Positive Pulse Train with a fixed 
frequency and varying base line pulse width. 
This sort of time function is analogous to a 
pulse width modulation (PWM) device used in 
such applications as load dimmers, and speed 
controllers, etc. Although such devices are more 
complex than this simple example, it is adequate 
to illustrate our objective, which is to show 
another example of how RMS values are 
dependent on pulse width and frequency 
content. The results of this analysis are very 
similar to the analysis in Example 1. Examine 
Figure 5 (page 9) and notice again how RMS 
value depends on the frequency content of the 
measured pulse train. 
 
Example 3 
Consider a half-wave rectified sine wave as 
shown in blue for the #6 entry of Table 1 (page 
7). It is clear that the time function is just the 
positive half of a sine wave at some frequency, 
“f0”. In addition we see that this function does 
not have sharp corners with varying base line 
widths; therefore, we intuitively suspect that the 
frequency content (harmonics of f0) will be 
small. Figure 6 (page10) clearly illustrates this. 
Similar results apply to the Full Wave Rectified 
Sine Wave, entry #7 in Table 1.  
 
Another Surprise Example 
Consider the case where a 50 horsepower DC 
motor is driven by a 60Hz three-phase balanced 
Wye AC to DC speed controller containing a 
non-line filtered bridge rectifier. We want to 
measure the RMS phase line current in one 
60Hz phase voltage line.  
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Figure 3 for this proposed situation shows in 
blue the three-phase line current in phase A.  Is 
this a surprise? Can your RMS measurement 
device correctly measure RMS values of this 
type 60Hz line current? 
 
 

 
 
                               Figure 3 

Three-Phase Wye 60Hz Bridge Rectifier 
          Blue Line Current Phase A 

                        Black Phase A Line Voltage 
 
Equations 
Appendix 1 (page 12) displays Fourier Series 
equations for examples used in this Application 
Note. 
 
Crest Factor 
Another interesting specification on RMS 
measurement modules is the Crest Factor, 
sometimes called the Form Factor. Error due to 
Crest Factor is an often stated specification for 
RMS measurement devices. Crest Factor is 
defined as:       

Peak valueCrest Factor =                   Eqn.  5
RMS value

 

Using the Crest Factor specification as a 
selection guide requires that one knows both the 
peak amplitude value and the RMS value of the 
time function to be measured.  Unfortunately 
both are unknown before measurements are 
made. Therefore, it is essentially impossible to 
specify an RMS error associated with the Crest 
Factor for all possible non-sinusoidal time 
functions. Nevertheless, RMS measurement 
module suppliers do show a range of Crest 

Factor errors that a buyer can use to get a 
“handle” on possible RMS errors caused by 
non-sinusoidal shaped time function for a given 
RMS measurement application.  
 
 
The conclusion  
The above examples illustrate that when 
measuring RMS one should try to determine 
what is being measured and make sure the RMS 
measurement device has adequate frequency 
response, in excess of n*f0. This may be 
somewhat difficult to do accurately since one 
does not usually know beforehand the shape of 
the signal to be measured and exactly how many 
(“n”) harmonic frequencies are necessary to 
achieve a required accuracy in the RMS 
measurement.           
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Table 1 
                     Calculus Values of RMS for Some Common Non-Sinusoidal Wave Functions 
 

 
 
 
 
 
 
 
 

# Function Mathematical RMS 

1 

 
 

Bipolar Square Wave: Frequency fo, T = 1/fo   Peak = Am 
+Am 0< t< T/2;  -Am T/2< t <T 
RMS = Am 
Note: This is the same as a DC Function. 

2  

Positive Pulse Train:  Frequency fo, T = 1/fo   Peak = Am 
Base Line Pulse width  tw 
+Am  0 < t < tw 

0RMS = Am* tw*f  

3 

 

Bipolar Pulse Train: Frequency fo, T=1/fo   Peak = Am 
Pulse width tw 
+Am  0< t <tw;   -Am  T/2< t <(T/2+tw) 

0RMS = Am* 2*tw*f  

4 

 

Bipolar Triangle Wave: Frequency fo, T = 1/fo  Peak = Am 
+Am, -Am Symmetric about T/2 
RMS = Am 3÷   independent of  driving frequency 

5 
 

Bipolar (± Am) Sawtooth Wave Frequency fo, T = 1/fo  Peak = Am 
Base Line Pulse Width tw 
Symmetric about T/2 

0
2RMS = Am* tw*f *
3

 

6 

 

Black:  Sin Wave: Frequency f, T = 1/fo   Peak = Am 
RMS = Am 2÷   independent of driving frequency 
Blue: Half Wave Rectified Sin Wave: Frequency fo, T = 1/fo  Peak = Am 
RMS = Am 2÷  independent of driving frequency 

7 

 

Full Wave Rectified Sin Wave: frequency fo, T = 1/fo   Peak = Am 
RMS = Am 2÷  independent of driving frequency 
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The graph shown below in Figure 4 is a sample illustration of how the RMS error value of a sawtooth 
bipolar pulse varies with base line pulse width (tw) expressed in % Duty Cycle and number (n) of 
harmonic frequency components. In addition, the variation in Crest Factor is shown. 

 

 
 
                                                                 Figure 4 
                        Single Phase Bridge Rectifier 60Hz Line Current RMS %Error  
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Crest Factor
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The graph shown below in Figure 5 is another sample illustration of how the RMS error value of a 
non-sinusoidal rectangular positive pulse train wave form varies with base line pulse width (tw) 
expressed in % Duty Cycle and number (n) of harmonic frequency components. Pulse trains of this 
nature are analogous to pulse width modulation, PWM devices. In addition, the variation in Crest 
Factor is shown. 

 

 
 
                                                                           Figure 5 

           Rectangular 60Hz Positive Pulse Train RMS %Error 
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The graph shown below in Figure 6 is a special example of how the half wave rectified Sine wave 
RMS error value varies with the number (n) of harmonic frequency components. As shown, a 
relatively small number of harmonic frequency components (three in this graph) is required to 
establish a tiny RMS %Error. This is expected, since the pulse width is exactly half a period and the 
function is a smooth completely defined sinusoid. In addition, the Crest Factor is shown as a constant 
value of two. 
                                                                                                                        
 

 
 

Figure 6 
Half Sine Wave RMS %Error   
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DATAFORTH RMS MEASUREMENT DEVICES 
 
True RMS measurements require instrumentation devices that accurately implement the RMS 
equation. Dataforth has developed three RMS module families that do just that: the SCM5B33, 
SensorLex® 8B33, and DSCA33. All three families are made up of isolated True RMS input 
modules that provide 1500Vrms transformer isolation. Each module provides a single channel of 
AC input that is converted to its True RMS DC value, filtered, isolated, amplified, and converted 
to standard process voltage or current output (Figure 7 below). 
 
The SCM5B33 and SensorLex 8B33 are plug-in-panel products; the DSCA33 is a DIN rail mount 
device. 

 
 

 
 

Figure 7 
SCM5B33 Block Diagram  

 
Block diagrams for the 8B33 and DSCA33 are very similar to the 5B33. 
 
 
 
References: 
 

1. Dataforth Corp., http://www.dataforth.com  
2. Dataforth AN101 Measuring RMS Values of Voltage and Current,     

http://www.dataforth.com/catalog/pdf/an101.pdf   
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APPENDIX 

 
Appendix 1. 
 
Fourier Series equations for examples in this Application Note are shown below for your reference. 
Recall for all time periodic well behaved functions “f(t)” the Fourier Series representation is: 

• f(t) = ao + n  over all  “n” for [ an*Cos(n*2*π*fo*t) +  bn*Sin(n*2*π*fo*t]    

• “n” is the number of a particular frequency harmonic,   n = 1 to infinity is the limit 
• “fo” is driving source frequency,   T = 1/fo 

0

T

0 0
0

T

0 0
0

T

0

* f(t)*Cos(2*π*n*f *t)  ....... 

ao  =  Average DC value   

an bn = 2*f * f(t)*Sin(2*π*n*f *t)   f

f * f(t)

= 2* dt

dt

dt∫ ∫

∫
 

• Fourier RMS = {ao^2 + n over all  “n” for [(an^2 + bn^2)/2]}^0.5   

• Calculus Crest Value = Am ÷ RMS Value   Where  Am  is Amplitude  maximum = Vpeak 
 
 

1a. Bipolar Square Wave,   #1 in Table 1  
an = 0 
bn = (2*Am/(Pi*n))*(1-Cos(π*n))   n is odd; no even harmonics 
ao = 0 

 
2a. Positive Pulse Train,   #2 in Table 1 

an = (Am/n*Pi)*Sin(2*π*n*fo*tw)   
bn = (Am/n*Pi)*(1-Cos(2*π*n*fo*tw )) 
ao = Am* tw *fo  

 
3a. Bipolar Pulse Train,   #3 in Table 1 

an =(Am/n*Pi)*Sin(2*π*n*fo*tw) *(1 – Cos(n*π))  
bn = (Am/n*Pi)*(1-Cos(2*π*n*fo*tw )) *(1 – Cos(n*π)) 
ao = 0  

 
4a. Triangle Wave,   #4 in Table1 
 an = 0 

bn = (Am*8/(π^2*n^2))*Sin(n*π/2)    n is odd; no even harmonics 
 ao = 0  
 
5a. Bipolar Sawtooth Wave,   #5 in Table 1 

an =   (Am/(2*fo* tw *π^2*n^2))*(1-cos(n*2*π*fo* tw ))*(1-cos(n*π)) 
   bn =  (Am/(n*Pi) - (Am/(π^2*fo*n^2*2* tw ))*sin(n*2*π*fo* tw )))*(1-cos(n*π)) 
 ao = 0 
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6a. Half Wave Rectified Sin Wave,   #6 in Table 1 
an = (-2*Am/(π*(n^2-1))   n is even 
b1 = Am/2   n =1 
bn = 0   for all n > 1 
ao =  Am/Pi 
 

7a. Full Wave Rectified Sin Wave,   #7 in Table 1 
      an = (-4*Am/(π*(n^2-1))   n is even 
 bn = 0  for n >1 
 ao = 2*Am/Pi      
  
 
 
Appendix 2. 
 
Some interesting results are shown below in Figure 8. Given our ideal model (Equation 4) of a 
sawtooth line current pulse train, the empirical data shown in Figure 8 illustrates the variation trend in 
base line pulse width (tw) with load resistance for various values of filter capacitance. 
 

 
 
Figure 8 

                        Base Line Current Pulse Width Variation with Load Resistance  
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Appendix 3. 
 
Table 3 shown below illustrates a comparison between the assumed ideal model of a current 
sawtooth pulse used in this Application Note to analyze a full wave bridge rectifier and a PSpice 
simulation of an actual bridge full wave rectifier. Although the individual results are not identical, 
the comparisons are close enough to justify the ideal model used for our Fourier Series analysis. 
Remember that PSpice simulation uses real models for circuit elements whereas our model uses 
ideal components. 
        
                             Table 3  

  R = 5 , C = 10000u, Vin = 240VAC, fo = 60 
Parameter Excel PSpice 

Vo RMS 79.59 78.50 
Iin peak 43.20 38.60 
Iin RMS 10.05 10.10 

 
 
 
Appendix 4. 
 
The output of a full wave rectifier with a capacitor filter has both a DC value and a ripple component 
determined by the input AC RMS voltage, input driving frequency, and the rectifier circuit 
components such as filter capacitance and load resistor. See Figure 2 (page 4) for a reference.  
 
Using Parceval’s Theorem we could determine the output RMS value. Unfortunately, we do not know 
beforehand the individual RMS values of the DC and Ripple component. You may find interesting the 
equations shown below, which represent an analytic effort to calculate the output RMS voltage and 
the peak current occurring at the instant the filter capacitor begins to charge. The following equations 
are derived using our Excel model, (Equation 4 page 5). Table 3 above illustrates the comparison 
results.    
 
4a.   VoRMS = [(Vin*2^0.5)*((Rload*C*fo*(1-EXP(-2*t1/(Rload*C)) + 0.5                                

                   - (1/(4*π))*Sin(4*π*fo*t1))^0.5)]/X2 
 
4b.    Ipeak = ((VinRMS/X2)*2^0.5)*(C*2*π*fo)*Sin(2*π*fo*t1) +                             
                                     (-VinRMS/X2)*2^0.5)*Cos(2*π*fo*t1))/(Rload*X2) 
 
        Where:   (a)   X2 is Transformer turns ratio (X2 in all above examples is 4:1, 1/X2 = 0.25) 
                       (b)   t1 is exponential decay time of filter capacitance and is equal to solution of  
                          EXP(-t1/(Rload*C)) + Cos(2*π*fo*t1) = 0  
                              One can solve using:  HP49g+ calculator,  Mathcad,  MatLab, Excel Solver, etc. 
       (c)   tw = 1/(2*fo)  - t1  
 
4c.    i(t)RMS = Ipeak*(fo* tw *2/3)^0.5    For  i(t) = ipeak*(1-t/tw)         
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