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DID  YOU  KNOW ? 
Albert Einstein is said to have once been asked if he wanted to be part of the government of the new nation of Israel. As the 

story goes, he replied that politicians are forgotten, but equations are forever. More precisely, he said:  

“Yes, we have to divide up our time like that, between our politics and our equations. But to me our equations are far more 

important, for politics are only a matter of present concern. A mathematical equation stands forever.” 

 

Op-Amp Errors, Another View 
 
Preamble 

The subject of Op-Amp errors has been covered by many 

writers. Dataforth’s Application Note 102 [1] covers the 

topic as applied to instrumentation amplifiers and 

provides links to spreadsheets for worst case error 

analysis. This is a good place to go for the practical 

engineer. The instrumentation amplifier of Application 

Note 102 can be decomposed into the non-inverting 

amplifier of this application note using Bartlett’s bisection 

theorem [2]. 

 

Using circuit simulators and suitable Op-Amp macros 
will provide quick results. Two free downloads are TI 

Tina and LTspice. These may be found on the websites of 

Texas Instruments and Linear Technology. 

 

This note concerns only Op-Amps and does not attempt to 

be exhaustive. Its objective is to show how final equations 

of some basic errors are derived from first circuit 

principles – primarily node analysis. Final equations are 

enclosed with a box.  

 

This Application Note is for the math driven reader. We 
have all had the experience in our math and technical 

education of reading a treatment of some topic where the 

author introduces material and jumps to a final equation 

stating “the derivation is left to the interested reader.” 

Unless our teacher gave the derivation as an assignment, 

most of us were not interested. Another hated statement is 

“may be seen by inspection.” Not all students are 

interested inspectors. It does have to be admitted that 

many books would be much too long if not for these 

shortcuts. It is also true that self-taught knowledge, while 

frequently incomplete, often stays longer. Perhaps non-

math oriented people never knew that following along 
with pencil and paper is what makes math come alive. For 

many, math becomes a blur of meaningless symbols, 

mindless formula plugging, or even blind imitation. 

 

An elegant way to do the following analysis is using 

Middlebrook’s Extra Element Theorem [3]. However, I  

start with basic circuit analysis and turn the algebraic 

crank. 

Offset Voltage 

Assume the circuit of Figure 1 is the “Ideal Operational 

Amplifier” except for offset voltage and finite open loop 

gain. 
 

 
 

Figure 1 

Offset Voltage 
 

First,  the ideal amplifier. For  to be very, very large, 

the independent variable  must be close enough, for all 

practical purposes, to the dependent variable . To find 

the Ideal Amplifier Gain, use the voltage divider relation: 

 

 
 

Negative feedback amplifiers are said to have closed loop 

gain ( . When the feedback connection is not made, 

the phrase becomes open loop gain ( .   is 

called the feedback factor. In this note  symbolizes the 

feedback factor. 
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Eq. 1.1   

 

Eq. 1.2   

 

 

Rearranging the terms, 

 

Eq. 1.1a   

 

  

 

   

 

Eq. 1.2a   

 

   

 

 

Combining Eq. 1.1a and Eq. 1.2a, 

 

  

 

 

  

 

 

  

 

 

 

 

 
 

 

 

 
Equation 3 easily, perhaps eloquently, shows how offset 

voltage and limited open loop gain modify the familiar 

ideal gain equation. Modern Op-Amps have very high 

open loop gain. If , the error of offset voltage 

alone is easily observed. It is multiplied by the closed 

loop, ideal gain. This is often the most serious problem in 
high gain Op-Amp applications. 

 

Note that this is really basic feedback theory and applies 

to much more than just Op-Amps. Some communication 

amplifiers and various control problems are examples 

with open loop gain far from infinite. 

 

Bias and Offset Current 

 

 
 

Figure 2 

Bias Current 

 

Define      

 

Eq. 2.1   

 

Eq. 2.2   

 

Eq. 2.1a       
 

       

 

Eq. 2.2a       
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Eq. 1.3 
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Eq. 2.1a and 2.2a 

 

  

 
  

 
  

 

  

 
 

 

 

 

 

 

 

 

 

 
 

For many modern Op-Amp applications, the ideal model 

is adequate. When it is not, consideration of offset voltage 

and input current suffices for many of the rest.  

Exceptions are high gain circuits and power amplifiers 

driving a heavy load. Note that integrated circuit Op-

Amps have almost equal bias currents on the positive and 
negative inputs. The difference is sometimes called offset 

or difference current. If the source resistances as seen 

from each input are nearly the same, the error is 

minimized. 

 

The rest of this paper is for the interested reader. It has 

more importance in general control systems. 

 

Output Resistance 

 

The following amplifier is ideal in every way, except it 

has limited open loop gain and a non-zero output 
resistance. As we will see, if we assume infinite open loop 

gain, the output resistance would have no effect. Since we 

are considering non-zero output resistance, a load 

resistance is included. Of course, the gain determining 

resistors are also a load on the amplifier. 

 
 

Figure 3 

Output Resistance 
 

 
 

Eq. 3.1   

 

Eq. 3.2   

 
Gathering terms, 

 

Eq. 3.1a   

 
Eq. 3.2a 

  

 

Let,   

 

  

 

Then,   

 

Combining equations, 
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Equation 3.3 provides a compact view of what  does to 

the gain. Infinite  makes it have no effect and reduces 

the gain to , as we know it must for an ideal 

amplifier. Whatever the effect, it may be reduced further 

by large . With IC Op-Amps, the effect may be 

exceedingly negligible. 

 

 

 

 

 

 

 

 

 

Input Resistance 

 

 
 

Figure 4 

Input Resistance 

 

Eq. 4.1   

 

Eq. 4.2   

 

   

 

Let,   

 

 

Rearranging terms, 

 

Eq. 4.2a   

 
From Eq. 4.1, 
 

   

 

Eq. 4.1a   

 

Combining equations 4.1a and 4.2a, 
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From equation 4.3, we can easily see how changes the 

“ideal gain.” For infinite ,  has no effect 

whatsoever. For that reason, we have to consider both in 

the same model. This is intuitively satisfying from merely 

looking at Figure 4.  If we let  approach infinity, we get 

the effect of  alone. 

 

Now we can consider the input resistance of the entire 

circuit. 

 

Eq. 4.4 

   

 
 

Eq. 4.5   
 

Combining Eq. 4.4 and Eq. 4.5, 

 

   

 
Using equation 4.3, 

  

 
 

 
   

 

 

 

 
For  

 

From this we can see that the input resistance of the Op-

Amp is increased by the ratio of open loop gain to the 

closed loop, “ideal gain.” For example, using typical 

values  gives an increase multiplier of 
1000.  Note that “ideal gain” is the inversion of the 

feedback factor: 

         

Some authors often use , rather than a symbol for “ideal 

gain.” 

 

Input, Output, and Load Resistance Altogether 

 

 
 

Figure 5 

Input and Output Resistance with Load 

 

 
 

Eq. 5.1   

 

Eq. 5.2   

 
Eq. 5.1a 

 

 

 
 

Eq. 5.2a   

 

Define:  
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Eq. 4.6 
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Eq. 5.2b   

 
Eq.5.1a and 5.2b 

 

  

 

 
 
Now, we have a clear relation between the dependent 

variable  and the independent variable . At this 

point, I will take the easy way out and say the next 

intermediate steps are “left to the interested reader.” The 

same algebraic methods of factoring and cancelling used 

above will get you to Eq. 5.3. Remember as you go that 

 must be allowed to clearly approach 

infinity. So put them in denominators so those terms will 

approach zero.  must approach zero, so put it in 

numerators.  Finally look for any way that negative terms 

can cancel out. 

 

Finally, 

 
 

Bringing =  out to show , 

 
 

 

 

 

 
Again the ratio plays an important role. 

 in the numerator is clearly insignificant. 

 

From equation 5.3, you may easily see how the amplifier 

imperfections can go to their ideal limits leaving the ideal 

gain equation, and there are no vexatious negative signs. 

Equations with a negative sign cause me to wonder if the 

whole thing could go negative. Then I have to ask myself 

if that is physically meaningful or possible. If not, I may 

have made a mistake. Last of all, don’t forget unit 

analysis. Gain equations must have all terms unit-less, 

voltages volts, resistances resistance, and so on.  This is 
often a quick way to see something is wrong, or going 

wrong, in a derivation. 

 

To generalize on all of the previous, the ratio of  

makes much of the difference as to whether these error 

sources are significant. 

 

Example and Conclusion 

 

Let’s see if any of this is worth considering. Consider the 

following design. 

 

 = 200k 

 = 50kohm 

 = 100 

 = 99.9k 

 = 100 

 = 2k 

 
These numbers in equation 5.3 yield a gain of 994.76, a 
0.52% gain error. Almost all of this comes from the 

denominator, and there only from . A very slight 

amount comes from the ratio . I believe we could 

also calculate an error for one element at a time and 

assume superposition. Beyond this 0.5% error, the resistor 

tolerances are obviously important. Offset voltage and 

bias current may produce larger errors and should usually 

be considered first. Additional error sources are noise, 

power supply rejection, and common mode rejection.  

Noise is a whole subject in itself. Then comes temperature 

stability and ageing. Room temperature errors can be 

calibrated out, but temperature and ageing cannot, unless 

we use some type of reference and do automatic 
calibration with a feedback loop. If we don’t have a 

processor for this, a clocked feedback integrator with an 

analog multiplexer can be used for offset error. Just 

provide feedback to the ground connection of with an 

inverting integrator. Be careful of noise. 

 

Perhaps for day-to-day work it is best to just use a good 
simulation! However, always a however, while quick 

numerical modeling is a great aid, we easily lose insight 

into the sources of error. Equations like 5.3 can show 

where the bulk of error comes from for a particular 

application. In the example, almost all of the gain error 

comes from the limited open loop gain and resistor 

tolerances. 
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