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DID  YOU  KNOW ? 
Thomas Alva Edison (1847-1931) was perhaps the greatest American inventor. He patented over 1000 inventions and 
established one of the first organized research centers, with over 2000 employees. He was partially deaf and had little formal 
education. Schoolmasters considered him dull and were annoyed by his many questions, so his mother took him out of school 
and taught him herself. Edison is perhaps best known for the electric light, the phonograph, and the discovery of electron 
movement within a vacuum. Known as the Edison Effect, this discovery ushered in the age of vacuum tube electronics. 
 

 Phase Angles and Time Delays  
 
Preamble 
As a prerequisite to this Application Note, the reader is 
encouraged to examine Dataforth’s Application Note 
AN112, Reference 2, which describes the amplitude 
characteristics and reviews the analytical techniques of 
low-pass filter frequency dependent transfer functions 
associated with Dataforth’s signal conditioning modules’ 
filter circuits.  
 
Internal filtering enhances sensor signal integrity of signal 
conditioning modules (SCM) by eliminating undesirable 
frequency and noise components. However, the inherent 
characteristic of this type of filtering functionality adds a 
phase angle with an associated propagation delay to the 
original signal. This added phase and delay does not 
generally affect steady state low frequency industrial 
process measurements. However, in some situations, near 
instantaneous changes in process variables need instant 
recognition. In these situations, one should carefully 
examine SCM specifications to determine their 
applicability. Dataforth SCM specifications include pulse 
transient data to assist selection. Visit Dataforth’s 
website, Reference 1. 
 
The objective of this application note is to present a brief 
visual examination of typical SCM low-pass (LP) filter 
pulse and phase characteristics. For simplicity, only RC 
low-pass filters are examined, with a minimum of 
mathematical analysis, to establish some general first-
order-approximation conclusions. Multi-pole filter 
characteristics can be created by cascading the topologies 
illustrated in Figures 1, 2, and 3. In practice, circuit values 
are adjusted to create special amplitude, phase, and pulse 
characteristics. Years of research on filter topologies such 
as Bessel, Butterworth, Chebyshev, Cauer, etc., have 
established standard filter characteristics with associated 
component selection rules. The interested reader is 
encouraged to examine the exhaustive literature on these 
characteristics.  
 
 
 

 
Low-Pass RC Filters 
Figures 1 and 2 illustrate two different low-pass 2-pole 
RC filter topologies, which are examined here to develop  
an understanding of low-pass filter phase shift and delay 
characteristics. In Figure 1, the RC sections are isolated 
by a unity gain amplifier, which is not necessary but is 
included here for illustration purposes.  
 
 
 
 
 
 

 
 

Figure 1 
Low-Pass Isolated 2-Pole RC Passive Filter 

 
 
 
 
 
 
 
 
 

Figure 2 
Low-Pass 2-Pole RC Active Sallen-Key Filter 

 
Equation 1 describes the steady state sinusoidal s-domain 
transfer function format for a typical low-pass 2-pole RC 
filter. The “b” coefficients of “s” in the denominator, 
D(s), determine the filter poles and are functions of RC 
component values. See Reference 2. 
 

2
N(s) GainT(s) =  = ; s = i*2*π*f
D(s) s *b2 +s*b1+ b0

   Eqn. 1                       

 
Coefficients b2 and b0 are defined as b2 = C1*R1*C2*R2 
and b0 = 1. However, coefficient b1 has different values 
dependent on the circuit topology. Expressions for b1 are: 
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 Figure 1:   Isolated RC sections, Gain = 1 
                 b1 = C1*R1 + C2*R2, (gain independent) 

 Figure 1:  Interacting RC sections, No amplifier    
                b1 = C1*R1 + C2*(R1+R2)  

 Figure 2: Active RC Sections  
                b1 = C1*R1*(1-G) + C2*(R1+R2) 
 

The typical analysis of frequency dependent transfer 
functions, N(s)/D(s), determines the relationship between 
denominator, D(s), roots defined as poles, and numerator, 
N(s), roots defined as zeros. Historically, the analysis of 
transfer function characteristics uses the locations of poles 
in the s-plane to establish a multitude of well-known 
specific behavior characteristics such as the Bessel, 
Butterworth, Chebyshev, and Cauer, which provide 
designers with the opportunity to tailor filter behavior to 
specific applications. Complete in-depth reviews of this 
information are beyond our objective for this document. 
 
 A practical examination of RC low-pass filter pulse 
response and phase shift characteristics, primarily focused 
on LP type filters necessary in industrial signal 
conditioning modules, will now be presented. 
Examination of the typical transfer function for a low-
pass 2-pole RC filter topology as expressed in Equation 1, 
where N(s) is a constant (the Gain), illustrates some basic 
LP filter behavior characteristics.  
 
1. RC products are recognized as time-constants “τ” and 

their reciprocals “1/τ” have units of radians per second 
“ω” where ω = 2*π*f, and “f” is frequency, in Hertz.  

 
2. Equations 2, 2a, and 3 are illustrations of how Equation     

1 can be rewritten. Recall that “roots” are the 
mathematical solutions of D(s) = 0 and are the 
reciprocal of filter time constants. 

 

( ) ( )1 2

GainT(s) = ; s = i*2*π*f
s*τ +1 * s*τ +1

       Eqn. 2 

 

Recall: x x
x

1 1 - root xτ = ; f = =
- root x 2*π*τ 2*π

 Eqn. 2a 

 

1 2

GainT(f) =  
f f1 + i* * 1 + i*
f f

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                      Eqn. 3 

 
3. Roots of D(s), the dominator, are often referred to as 

poles. Their values are determined by the coefficients 
b2, b1, and b0, which are determined by circuit RC 
values. These roots control LP filter behavior with 
respect to frequency. Equation 3 illustrates the 
frequency dependent complex filter transfer function, 
T(f), of Equation 1 in terms of  f1 and f2, which are  

roots of D(s) divided by 2*π.  Equation 4 shows the 
typical case for “n” denominator roots of a low-pass 
filter transfer function where f1, f2, … fn are defined as 
“break point” frequencies. When roots are complex 
numbers, equations and associated mathematics become 
very complicated. 

 

1 2 n

GainT(f) =
f f f1 + i* * 1 + i* .........* 1 + i*
f f f

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  Eqn. 4   

 
4. Magnitude and phase response as a function of 

frequency can be determined from Equations 3 and 4. 
The pulse response as a function of time is extremely 
important in determining filter delays and response 
times. Equation 5 describes the one-volt step input 
time response of the typical low-pass 2-pole RC filter 
of Equation 2 with non-repeating real denominator 
roots.   

 
( ) ( )2 2 1 1

1 2

τ *exp t / τ - τ *exp t / τ
V(t) =1 +

(τ -τ )
− −

         Eqn. 5 

Recall that the time constants in Equations 2 and 5 are 
negative reciprocals of denominator roots in Equation 1. 
 
Historically, most texts on filters analyze behavior with 
respect to the number of poles, their position relative to 
one another, and their position in the s-plane. Manually 
calculating poles requires knowledge of the “b” 
coefficients of D(s) and methods of finding roots of multi-
dimensional polynomials, which can be a very difficult 
task. Special simulation software simplifies this task. 
There are some simple circuit observations one can use to 
get a “feel” for the basic behavior of RC low-pass SCM 
filters. The best way to explore these simple 
approximations is to examine some visual examples using 
the low-pass RC 3-pole filter in Figure 3.  
 
 
 
 
 
 
 
 

Figure 3 
Low-Pass RC 3-Pole Filter 

 
Equations 6 and 6a represent the s-domain transfer 
function of Figure 3. 
 

3 2
GainT(s) = ; s = i*2*π*f

s *b3+s *b2 +s*b1+ b0
   Eqn. 6 

 
Equation 6 can be arranged in the following form: 
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 Root 1 Root 2 Root 3 
 Real Img Real Img Real Img

A -3110950 0 -79 0 -17 0 
B -3110950 0 -54 0 -25 0 
C -3110950 0 -31 20 -31 -20 
D -3110950 0 -22 29 -22 -29 

 
GainT(s) =

s s s+1 * +1 * +1
r1 r2 r3

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                   Eqn. 6a 

 
Recall that circuit values determine the “b” values and 
these “b” values uniquely determine the denominator’s 
mathematical roots, which are the “r” values in Equation 
6a. Dataforth design engineers select circuit values, which 
establish different sets of “b” values. These “b” values 
determine the filter poles, which uniquely establish filter 
behavior.  
 
Mathematically, the denominator roots of filter transfer 
functions, T(s), can be real numbers or complex numbers 
(x + i*y) or a combination. In addition, mathematically 
calculated roots must be entered in factored equations like 
Equation 6a as negative values.  Note: If the real part of 
any root of D(s) is (or ever can become) positive, the filter 
is unstable. Readers may want to review feedback theory 
to explore the phenomena of stability. 
 
The following list and associated Table 1 shown below 
outline some different root possibilities for the filter 
circuit in Figure 3. 
 
A.  Three real single negative roots, color black. 
B.   Three real single negative roots; color blue. 
C.   One real negative root and one complex pair with  
       negative real parts, color green. 
D.   One real negative root and one complex pair with  
     negative real parts, color red. 
 

Table 1 
Example Values for Root Combinations 

For 3-Pole LP Filter Topology in Figure 3 
 
 
 
 
 
 
 
 
 
 
Figures 4, 5, and 6 illustrate how the example categories 
of “roots” in Table 1 affect low-pass filter behavior of the 
circuit shown in Figure 3. The curves in these figures are 
color coded to agree with Table 1. There are an infinite 
number of possible combinations of circuit values. 
Hundreds of articles and scores of texts have been written 
with rigorous mathematical treatment on how to select 
circuit values to achieve specific filter behavior such as 
Bessel, Butterworth, and Chebyshev, to mention a few.   
 

 
Figures 4 and 5 illustrate how the roots of D(s) affect 
amplitude and phase response versus frequency of the 
filter topology in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 

Low-Pass 3-Pole RC Active Filter Frequency Response  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 5 
Low-Pass 3-Pole RC Active Filter Phase Response  

Curve 1: Case A, B, C      Curve 2: Case D 
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 3dB, Hz t-50%, ms 

A 2.6 55 
B 3.4 48 
C 4.7 42 
D 6.6 37 

 
Figure 6 shows the response to a unit step input. Of 
particular interest is the graphical relationship between 
frequency response and step input pulse response.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 
Low-Pass 3-Pole RC Active Filter Pulse Response 

 
General Observations 
The following are some general observations and 
relationships relative to basic LP filters used in signal 
conditioning modules. For simplicity, rigorous 
mathematical analysis and proofs are omitted. 
 
1. For LP filters, the upper 3dB frequency is determined 

by the interaction between all the filter poles. If there is 
one dominant pole (smaller by a factor of 5-10), then it 
is primarily responsible for the upper 3dB frequency. 
See Reference 2 and Equation 4. Note: The number of 
poles equals the number of time-constant capacitors in 
an RC low-pass filter.  

 
2. The frequency dependent phase shift behavior of stable 

low-pass RC filters is a composite combination of the 
phase shift contribution of each pole/root of D(s). Each 
pole can contribute up to 90 degrees of negative phase 
shift as frequency increases. For example, a 3-pole RC 
LP filter can have a maximum of 270 degrees of 
negative phase shift. The exact shape of a phase versus 
frequency plot is dependent upon the specific root 
values of D(s).  See Figure 5. 

 
3. As Figure 6 illustrates, the step input response has a 

time dependent behavior, which is very sensitive to the 
specific root values of D(s).  

 
4. As the “real” part of roots gets smaller with the 

“imaginary” part simultaneously increasing, the 
frequency response begins to peak near the 3dB 

frequency and the step response tends toward ringing. 
Examine Case C (green) and Case D (red) in Tables 1 
and 2 and Figures 4, 5, and 6. Clearly, both the 3dB 
frequency and the filter response time are tightly 
coupled and totally controlled by the roots of D(s), 
which are subject to the “b” coefficients as determined 
by RC values and filter gain. Changing circuit values to 
achieve a specific frequency behavior will affect the 
pulse response and vice versa. 

 
Table 2 

Low-Pass 3-Pole RC Active Filter Values 
Referenced to Table 1 and Figure 3 

3dB Frequency and Pulse Delay (Time to 50%) 
 
 
 
 
 
 
 
 
Industrial SCMs require internal multiple-pole LP 
filtering that has: (a) specified 3dB frequency, (b) steep 
attenuation well above the 3dB frequency (20dB per pole 
per frequency decade), (c) flat response with minimum 
ringing or ripples within the pass-band, and (d) anti-
aliasing function on the field side prior to amplification. 
Dataforth design engineers use rigorous design tools to 
provide all of these multi-pole SCM filter characteristics. 
The reader is encouraged to visit Reference 1 and 
examine Dataforth’s full line of SCMs and their 
associated filter characteristics.    
 
More for the Interested Reader  
Dataforth has an interactive Excel workbook for a 2-pole 
RC active LP filter. This Excel workbook allows one to 
enter individual circuit values and obtain instant plots for 
Step Input Responses, Gain versus Frequency, and Phase 
versus Frequency. Readers interested in exploring how 
circuit values influence filter poles, which in turn 
determine filter behavior, are encouraged to download 
this Excel file; see Reference 3. 
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