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DID  YOU  KNOW ? 
Pierre Simon, Marquis de Laplace (1749-1827) the famous French mathematician and astronomer was born in Normandy, 
France. His parents were humble farmers unable to provide him with an education; fortunately, wealthy neighbors recognized 
his talents and helped finance his education. Laplace became a professor of mathematics in Paris at the age of 20. As a 
political opportunist, he changed his political positions as needed to support his career, which prospered through three French 
revolutionary regimes. Napoleon made him a count and King Louis XVIII made him a marquis. The mathematical 
transformation, known as the “Laplace Transform” is but one of his many outstanding accomplishments. This transformation 
allows analyzing complex time dependent behavior with simple algebraic equations. The Laplace Transform is extensively 
used for analyzing time dependent electric circuits; interestingly, Laplace developed this transformation more than 50 years 
before the world had AC circuits to analyze! 
 

Filtering in Signal Conditioning Modules, SCMs 
 
Preamble 
 
Signal conditioning modules, SCMs, used for measuring 
process control variables such as temperature, pressure, 
strain, position, speed, level, etc. are always subject to 
externally induced noise signals. Electrically and 
magnetically induced noise voltages/currents are 
inevitable. Field sensors with output voltages in the 
millivolt range are certainly degraded by induced noise 
levels on the order of volts. Consequently, signal 
conditioning modules must provide filtering to eliminate 
induced noise components.  
 
Hundreds of articles and text books have been written on 
filters that provide a multitude of frequency 
characteristics such as the Bessel, Butterworth, 
Chebyshev, Cauer, etc.  In-depth reviews of this 
information are beyond the scope and intent of this 
document. The objective of this application note is a brief 
review of filter fundamentals primarily focused on the 
amplitude response of low-pass (LP) filters needed in 
industrial signal conditioning modules.  
 
Brief Review of Some Fundamentals 
 
Filter topologies are characterized by their transfer 
functions, which are frequency dependent ratios of  output 
voltage (Vout) to input voltage (Vin) expressed as ratios 
of  polynomials as shown. For example, 
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 More about this math later. 
 
Filter transfer function behavior is generally characterized 
by “Bode” plots, which are semilog plots of phasor 
amplitudes in decibels {20*log (Vout/Vin)} versus 

frequency and semilog plots of phasor phases in degrees 
versus frequency.  
 
Figure 1 illustrates Bode magnitude plots of three 
fundamental RC filter types; curve #1 single section RC 
low-pass (LP) filter, curve #2 single section high pass 
(HP) filter, and curve #3 two section bandpass filter.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
 Passive Filter Output Responses: Input is 1 Volt 
Curve #1 is LP, Curve #2 is HP, Curve #3 is BP 

 
Low-Pass (LP) filters allow transmission of only a range 
of low frequencies from DC to a higher cutoff frequency. 
See Figure 2, circuit #2 and Figure 1, curve #1. This type 
of filter is ideal for eliminating high frequency induced 
noise on low frequency signal data. Low-Pass filtering is 
required in most industrial SCMs to eliminate induced 60 
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cycle harmonics and randomly induced high frequency 
transient noise.  
 
High-Pass (HP) filters allow transmission of a range of 
high frequencies from a lower cutoff frequency to an 
upper limit of circuit component performance. See Figure 
2, circuit #1 and Figure 1, curve #2.  These type filters are 
ideal for eliminating induced low frequency noise on high 
frequency signal data.  
 
Bandpass (BP) filters allow transmission of a range of 
frequencies between a lower and upper cutoff limit.  The 
characteristics of a simple BP filter are shown in Figure 1, 
curve #3 and can be simulated by cascading the HP and 
LP circuits in Figure 2. These type filters are ideal for 
signal selection within a given frequency range. 
Conversely, bandpass filter transfer functions can be 
rearranged to function as “notch” filters, which eliminate 
frequencies between a lower and upper cutoff limit.  
 
 
 
 
 
 
 
 
 
 

Figure 2 
Single Section RC Passive Filters 

#1 is High Pass (HP):  #2 is Low-pass (LP) 
 

Basic Filter Characteristics 
 
Traditional filter transfer functions are implemented with 
either passive or active circuit topology. Passive filter 
circuit topology is configured with individual resistors, 
capacitors, and inductors; whereas, the typical active filter 
circuit uses operational amplifiers with resistors and 
capacitors in various feedback arrangements. Unique 
filter transfer function characteristics are implemented 
with active filters by selecting resistor and capacitor 
values in the feedback topology and by adjusting the 
filter’s amplifier gain. Some basic SCM filtering 
characteristics are illustrated in the following list. 
 
Bandpass: This filter transfer function applies equally to 
all frequencies within the range (band) of desired filtering 
with no amplitude variations within in the filter’s desired 
bandpass (i.e. a flat response with no ripples). Frequency 
components outside the bandpass are sharply attenuated.  
See Figure 1, Curve #3. 
 
Sharp Response at Cutoff Frequencies: Frequencies where 
the filter’s power response has dropped 50% or 1/√2  
(0.707) of the desired output voltage are defined as 

“cutoff” frequencies. Bode plots locate these cutoff 
frequencies 3 decibels below the flat mid range; hence, 
the term “3-dB points”. Ideal filters have no response 
below their lower 3-db cutoff, no response above their 
upper 3-dB cutoff, and very steep response slopes 
approaching these 3-dB points. The term “bandwidth” 
defines the frequency range between 3-dB “cutoff” 
frequencies. For low-pass filters, the bandwidth is from 
DC to the 3-db frequency.  See Figure 1, Curve #1. 
 
Note 1: Analysis on LP filters shows that cutoff behavior 
near 3-dB frequencies is determined by a mathematical 
combination of the individual roots (called “poles”) of the 
filter transfer function denominator polynomial, D(s). 
These roots are functions of the time constants within a 
filter circuit and have the units of Hz or radians/sec. The 
number of roots (order of denominator polynomial) is 
equal to the number of circuit time constants. For 
example, a RC low-pass filter containing four capacitors 
has four RC time constants and a fourth order 
denominator polynomial with four roots (poles).  
 
The mathematical combinations of denominator roots and 
the frequency spread between them determine the actual 
3-dB frequency. For instance, if all the individual roots 
differ by a factor of 10 then the lowest root (largest time 
constant) essentially is the 3-dB point. On the other hand 
if a filter has “n” equal roots, then the 3-dB point is 

( ){ }1/ n
3f * 2 1− . For situations between these two 

simple extremes, the math becomes complicated and 
computer simulations with bench testing are more 
effective ways to determine 3-dB points.  Figures 3 and 6 
illustrate the effects multiple poles have on “the” 3-dB 
frequency.  
 
Note 2:  Continued analysis of LP filter transfer functions 
reveals that the number of roots (or number of filter time 
constants) controls the slope of a filter’s response as it 
approaches the 3-dB point. Beyond the cutoff frequency, 
each pole contributes an amplitude decrease of 20 dB per 
frequency decade to the filter response. For example, a 4-
pole filter response beyond the 3-dB point has a limiting 
slope of -80 dB per decade.  
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 Figure 3 and Figure 6 illustrate the effect of multiple 
poles (RC sections) for a low-pass filter.  

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
Low-pass (LP) RC Passive Filter 

#1 is Single RC Section: #2 is 4 Identical RC Sections 
 

Over shoot: Sensors often output step functions or near 
instantaneous transitions between signal levels.  SCM 
filters should not allow excessive overshoot or ringing in 
responses to these step functions. RC time constants and 
filter gain determine active filter overshoot.  Figure 4 
shows the effects of modifying active filter time constants 
and gain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 

Filter Response to Input Voltage Pulse 
#1 is Input:  #2 is Maximum Flat:  #3 is Flat-Ringing 

 
 
 

Filter Response Calculations 
 
Manual analysis of filter transfer functions is laborious 
and best implemented  with special computer application 
programs; nonetheless, many salient filter characteristics 
are illuminated by manual analysis of simple filter 
topologies using Steinmetz’s phasor concepts and Laplace 
transformations.  
 
As an example consider the simple 2 RC section passive 
LP filter topology shown in Figure 5. The fundamental 
time dependent behavioral loop equations for this circuit 
are; 
  
 
 
 
 
 
 
 
 
Transfer function (Vout/Vin) derivations from these 
equations require considerable effort. Using phasor 
definitions, Laplace transformations, and steady-state 
frequency dependent sinusoidal voltages, reduce this 
effort to simple algebraic equations where Laplace 
transformation allows “s” to represents the complex 
frequency term “jω”. The LP filter transfer function time 
dependent equations for Figure 5 now become; 
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                          or rearranging
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Note:  D(s) in both these equations is a quadric 
denominator of the form ( 2a*s b*s c+ + ) with two roots. 
 
 
 

 
 
 
 
 

Figure 5 
Simple Passive Band-Pass Filter Topology 
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As an example, choose Figure 5 component values to be; 
R1=20kΩ, C1=0.5µF, R2=56kΩ, and C2= 0.001µF. A 
computer simulation program that sweeps the input 
sinusoidal voltage from one hertz to ten megahertz 
generates the results shown below in Figure 6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 
  Computer Simulation of LPCircuits in Figure 5 
       #1   Single R1C1 Section:        -3dB @ 15.92Hz   
       #2   Single R2C2 Section:        -3dB @ 2842Hz  
       #3   R1C1-R2C2 Combined:   -3dB @ 15.9Hz 
       #4   Identical R1C1 Sections:  -3dB @ 5.69Hz 
 
Further examination of this example, illuminates some 
important fundamental low-pass filter characteristics. 
 
 Each separate low-pass RC section has a cutoff 
frequency (response down by 3-dB) related to their 
individual RC time constant. Recall that for a single RC 
LP section the cutoff frequency f3 is 1/ (2πRC) Hz. See 
Figure 6, curve #1 and curve #2 

 
 Low-pass filters with identical RC sections have a much 
lower cut off frequency than the individual RC section. 
See curve #4 in Figure 6.  

 
 Each single low-pass RC section contributes a 20 dB 
change in voltage response for each factor of 10 change 
in frequency (20dB per decade). Recall that a 20 dB 
change represents a factor of 10 change in voltage ( i.e. 
a voltage change from 1 to 0.1 is a – 20 dB change). As 
RC sections with near equal time constants are added, 
the cutoff frequency decreases and, most importantly, 
the response slope increases. For example, one RC 
section gives 20 dB / decade whereas five RC sections 
give 100dB/ decade slope.  SCM filters need low cutoff 
frequencies with steep rates of response to ensure 
effective rejection of noise beyond the LP cutoff. 

 

 The quadric denominators “D(s)” in Eqn.1 and Eqn. 2 
have identical roots; 15.71 Hz and 2.8794 kHz. The 
denominator “roots” of these RC filter transfer functions 
are determined by circuit RC time constants and are 
defined as “poles”, which control the filter’s cutoff 
frequency.  The above example illustrates a fundamental 
filter characteristic; namely, low-pass RC filter cutoff 
frequencies are dominated by the smallest pole. See 
curve #3 in Figure 6 

 
 Low-pass RC filter transfer functions, which are 
arranged as shown in Eqn 1, always have denominators 
with “b”, the coefficient of the first power of “s” equal 
to the sum of the filters “open circuit” time constants  
and the filter cutoff frequency can be estimated by 
1/(2πb).  In Figure 5, the sum of open circuit time 
constants is [R1C1 + C2*(R1+R2)] = 10.076mS and 
frequency associated with this time constant is 15.8 Hz.  
Recall that; frequency is related to a  time constant “T” 
by the expression [f=1/(2*π*T)] and that an open circuit 
time constant is the product of each capacitor and the 
effective resistor this capacitor “sees” with all other 
capacitors open. Open circuit time constants are referred 
to by the mnemonic “OCTs.” 

 
 The numerators “N(s)” of valid filter transfer functions, 
N(s)/D(s), force the filter response to zero and are 
defined as filter “zeros”.  Low-pass SCM filters  have 
no “zeros”  

 
 Filter transfer functions have frequency dependent 
phase shifts and time delays, both of which are 
extremely crucial in high frequency communication 
applications. Substituting s = j2πf in Eqn 1 and 2 
illustrates frequency dependent phase angles. Phase 
characteristics of SCMs in industrial data acquisition 
systems are not generally an issue but may be crucial in 
high-speed control loops. Elimination of noise and 
maintaining signal integrity are the pacing  issues for 
industrial  SCM applications.  

 
Active Filters 
 
Figure 7 illustrates a popular cost effective active filter 
circuit topology. Circuits of this type offer numerous 
advantages over the typical passive circuit topologies. 
  
 
 
 
 
 

 
Figure 7 

Example Generalized Active Filter 
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3 dB @ 4 Hz 
-120 dB per decade

The transfer function for Figure 7 is; 
 
 
 
 
 
 
 
  
Figure 6 filter topology can implement either  low-pass, 
high pass, or band pass characteristics by selecting R and 
C combinations for Z1 ,Z2, Z3, Z4, and Z5. A typical 
low-pass active filter configuration has; Z1=R1, Z4=R2, 
Z3=1/sC1, Z5=1/sC2, and Z2=open. The transfer function 
for this topology is shown below in Eqn 4. 
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Vout N(s)= ...... arranged as ......
Vin D(s)

Gain Eqn.4
s (R C R C )+s C (R +R )+C R (1-Gain) 1+
 
Active LP filter transfer functions arranged in the same 
form as Eqn. 1 and Eqn. 4 exhibit characteristics similar 
to passive filters. For example, the roots of D(s) are poles 
and the smallest pole dominates the LP cutoff frequency. 
In addition, the “b” coefficient of the “s” term in D(s) is 
the sum of the filter’s open circuit time constants (OTC) 
and the filter cutoff frequency is closely approximated by 
1/ (2πb).  Moreover, a significantly large OTC dominates 
the LP filter 3-dB frequency. 
 
Active filters have an advantage over passive filters since 
their behavior is electronically adjustable be adjusting by 
the filter gain, as illustrated in Eqn. 4.   For example, 
active filter phase angles can be tailored to fit  special 
applications in communication and control loops. 
 
Dataforth SCM Filters 
 
Dataforth signal conditioning products all have exacting 
filters incorporated in their designs. These filters are 
tailored to individual SCM applications. Dataforth SCMs 
have multi-pole low-pass filters designed for low 
frequency and wideband applications. Figure 8 illustrates 
the typical response of a Dataforth SCM 6-pole low-pass 
filter with a 4 Hz 3-dB frequency and a “roll-off” of 120 
dB per frequency decade. Note that 50-60 Hz signals are 
attenuated by over 100 dB, a factor of 100,000.  This 
represents a very effective LP filter for eliminating 
induced industrial noise. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8   
Dataforth SCM Low-pass 6-Pole Filter 

3 dB @ 4 Hz with -120 dB per decade fall-off 
 
Figure 9 is the block diagram of Dataforth’s DIN-Rail 
signal conditioning general purpose analog input module, 
DSCA43. This module represents Dataforth’s 4-way 
isolation scheme with a multipole filter partitioned to 
provide anti-alaising filtering on the field side of the 
signal isolation barrier followed by multipole filtering on 
the system side of the isolation barrier. Readers are 
encouraged to visit Dataforth’s web site and explore their 
complete line of signal conditioning modules.  See Ref 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 
DSCA43, DIN Rail Analog Input Module, 

4-Way Isolation, Multi-Pole LP, Anti-aliasing Filter 
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