MAQ®20 # Industrial Data Acquisition and Control System **MA1047** MAQ20-JTC MAQ20-KTC MAQ20-TTC MAQ20-RSTC Hardware User Manual MAQ20-JTC/-KTC/-TTC/-RSTC Hardware User Manual MA1047 Rev. B – January 2014 © 2014 Dataforth Corporation. All Rights Reserved. ISO9001:2008-Registered QMS The information in this manual has been checked carefully and is believed to be accurate; however, Dataforth assumes no responsibility for possible inaccuracies or omissions. Specifications are subject to change without notice. The information, tables, diagrams, and photographs contained herein are the property of Dataforth Corporation. No part of this manual may be reproduced or distributed by any means, electronic, mechanical, or otherwise, for any purpose other than the purchaser's personal use, without the express written consent of Dataforth Corporation. MAQ[®]20 is a registered trademark of Dataforth Corporation. Modbus[®] is a registered trademark of the Modbus Organization, Inc. # **Table of Contents** | 1.0 | System Features | 1 | |------|---|----| | 2.0 | System Description and Documentation | 2 | | 3.0 | Unpacking | 3 | | 4.0 | Module Dimensions and Input Connections | 3 | | 5.0 | Installation | 2 | | 6.0 | Building a System | 5 | | 7.0 | Maintaining a System | 6 | | 8.0 | Expanding a System | 7 | | 9.0 | MAQ®20 I/O Module Registration | 8 | | 10.0 | Range Selection and Channel Enable | 11 | | 11.0 | Alarm Functions | 13 | | 12.0 | Setting and Monitoring Alarms | 15 | | 13.0 | Signal Averaging | 17 | | 14.0 | Reset Functions | 18 | | 15.0 | Module Identification and Status Registers | 18 | | 16.0 | LED Indicators | 19 | | 17.0 | Specifications | 21 | | 18.0 | MAQ20-JTC, -KTC, -TTC and -RSTC Address Map and Range Table | 22 | # **About Dataforth Corporation** "Our passion at Dataforth Corporation is designing, manufacturing, and marketing the best possible signal conditioning, data acquisition, and data communication products. Our mission is to set new standards of product quality, performance, and customer service." Dataforth Corporation, with more than a quarter century of experience, is the worldwide leader in Instrument Class® Industrial Electronics – rugged, high performance signal conditioning, data acquisition, and data communication products that play a vital role in maintaining the integrity of industrial automation, data acquisition, and quality assurance systems. Our products directly connect to most industrial sensors and protect valuable measurement and control signals and equipment from the dangerous and degrading effects of noise, transient power surges, internal ground loops, and other hazards present in industrial environments. Dataforth spans the globe with more than 50 International Distributors and US Representative Companies. Our customers benefit from a team of over 130 sales people highly trained in the application of precision products for industrial markets. In addition, we have a team of application engineers in our Tucson factory ready to solve any in-depth application questions. Upon receipt of an RFQ or order, our Customer Service Department provides fast one-day delivery information turnaround. We maintain an ample inventory that allows small quantity orders to be shipped from stock. Dataforth operates under an ISO9001:2008 quality management system. # **Contacting Dataforth Corporation** | Contact Method | Contact Information | | | |-------------------|---|--|--| | E-Mail: | | | | | Technical Support | techinfo@dataforth.com | | | | Website: | www.dataforth.com | | | | Phone: | 520-741-1404 and toll free 800-444-7644 | | | | Fax: | 520-741-0762 | | | | Mail: | Dataforth Corporation | | | | | 3331 E. Hemisphere Loop | | | | | Tucson, AZ 85706 USA | | | #### **Errata Sheets** Refer to the Technical Support area of Dataforth's website (<u>www.dataforth.com</u>) for any errata information on this product. # 1.0 System Features The MAQ®20 Data Acquisition System encompasses more than 25 years of design excellence in the process control industry. It is a family of high performance, DIN rail mounted, programmable, multi-channel, industrially rugged signal conditioning I/O and communications modules. #### **Instrument Class Performance** - ±0.035% Accuracy - Industry leading ±0.3C CJC Accuracy over full operating temperature range - Ultra low Zero and Span Tempco - Over-range on one channel does not affect other channels - 1500Vrms Channel-to-Bus Isolation - 240Vrms Continuous Field I/O Protection - ANSI/IEEE C37.90.1 Transient Protection - Ventilated Communications and I/O Modules - Industrial Operating Temperature of -40°C to +85°C - Wide Range 7-34VDC Power - CE Compliant, UL/CUL Listing and ATEX Compliance pending #### **Industry Leading Functionality** - The system is a Modbus Server and can be operated remotely with no local PC - Up to 4GB of logged data can be transferred via FTP during real-time acquisition - Up to 24 I/O modules, or 384 channels, per system, per 19" rack width - Per-channel configurable for range, alarms, and other functions - Backbone mounts within DIN rail and distributes power and communications - System firmware automatically registers the installation and removal of I/O modules - I/O modules can be mounted remotely from the Communications Module - Equal load sharing power supply modules allow for system expansion - Hot Swappable I/O modules with Field-side pluggable terminal blocks on most models - Sophisticated package enables high density mounting in 3U increments - DIN Rail can be mounted on a continuous flat panel or plate # **Distributed Processing Enables Even More Functionality** - Output modules are programmable for user-defined waveforms - Discrete I/O modules have seven high level functions: - Pulse Counter - > Frequency Counter - Waveform Measurement - Time Between Events - Frequency Generator - PWM Generator - One-Shot Pulse Generator #### **Multiple Software Options** - Free Configuration Software - Intuitive Graphical Control Software - ReDAQ Shape Graphical HMI Design & Runtime Solution - IPEmotion Muli-Vendor and Multi-Language Solution - Programming examples and LabVIEW VIs # 2.0 System Description and Documentation A MAQ®20 Data Acquisition System must have as a minimum a Communications Module, a Backbone, and one I/O Module. Examples include: MAQ20-COMx Communications Module with Ethernet, USB and RS-232 or RS-485 Interface MAQ20-DIOx Discrete Input / Output Module MAQ20-xTC Type x Thermocouple Input Module MAQ20-mVxN, -VxN Voltage Input Module MAQ20-IxN Process Current Input Module MAQ20-IO, -VO Process Current Output and Process Voltage Output Module MAQ20-BKPLx x Channel System Backbone Refer to www.dataforth.com for a complete listing of available modules and accessories. System power is connected to the Communications Module, which in turn powers the I/O modules. For systems with power supply requirements exceeding what the Communications Module can provide, the MAQ20-PWR3 Power Supply module is used to provide additional power. When a MAQ®20 I/O module is inserted into a system, module registration occurs automatically, data acquisition starts, and data is stored locally in the module. The system is based on a Modbus compatible memory map for easy access to acquired data, configuration settings and alarm limits. Information is stored in consistent locations from module to module for ease of use and system design. MAQ[®]20 modules are designed for installation in Class I, Division 2 hazardous locations and have a high level of immunity to environmental noise commonly present in heavy industrial environments. The MAQ®20 thermocouple input modules have 8 differential input channels. Separate models are offered for interfacing to Type J, Type K, Type T and Types R and S thermocouples. Cold Junction Compensation uses four internal sensors resulting in industry leading measurement accuracy in any system configuration and over the entire system operating temperature range. All channels are individually configurable for range, alarm limits, and averaging to match the most demanding applications. High, Low, High-High and Low-Low alarms provide essential monitoring and warning functions to ensure optimum process flow and fail-safe applications. Hardware low-pass filtering in each channel provides rejection of 50 and 60 Hz line frequencies. Field I/O connections are made through spring cage terminal blocks with 4 positions provided for the termination of wiring shields. Input-to-Bus isolation is a robust 1500Vrms and each individual channel is protected up to 150Vrms continuous overload in the case of inadvertent wiring errors. Overloaded channels do not adversely affect other channels in the module which preserves data integrity. For details on installation, configuration, and system operation, refer to the manuals and software available for download from www.dataforth.com. This includes, but is not limited to: MA1036 MAQ®20 Quick Start Guide MA1040 MAQ®20 Communications Module Hardware User Manual MA1047 MAQ®20 Thermocouple Input Module Hardware User Manual MA1037 MAQ®20 Configuration Software Tool User Manual MA1038 MAQ®20 ReDAQ Shape for MAQ®20 User Manual MAQ20-940 ReDAQ Shape Software for MAQ®20 – Developer Version MAQ20-941 ReDAQ Shape Software for MAQ®20 – User Version MAQ20-945 MAQ®20 Configuration Software Tool MAQ20-951 IPEMotion Software for MAQ®20 # 3.0 Unpacking Each MAQ®20 Data Acquisition System component is shipped in electro-static discharge (ESD) protective packaging. Use appropriate ESD protection measures while unpacking. Check visually for physical damage. If physical damage is noted, file a claim with the shipping carrier. # 4.0 Module Dimensions and Input Connections Figure 1: Module Dimensions Table 1: Input Terminal Block Connections | TERMINAL BLOCK POSITION (TOP TO BOTTOM) |
MAQ20-xTC
INPUT
CONNECTIONS | |---|-----------------------------------| | 1 | CH0 +IN | | 2 | CH0 -IN | | 3 | SHIELD | | 4 | CH1 +IN | | 5 | CH1 -IN | | 6 | CH2 +IN | | 7 | CH2 -IN | | 8 | SHIELD | | 9 | CH3 +IN | | 10 | CH3 -IN | | 11 | CH4 +IN | | 12 | CH4 -IN | | 13 | SHIELD | | 14 | CH5 +IN | | 15 | CH5 -IN | | 16 | CH6 +IN | | 17 | CH6 -IN | | 18 | SHIELD | | 19 | CH7 +IN | | 20 | CH7 -IN | The shield terminals are connected to the Field Side common and are isolated from the Bus. If shield drain to system ground is required, this connection must be made external to the module. #### 5.0 Installation The MAQ®20 I/O module package has been designed for easy insertion into and removal from a system and can mate with DIN rails mounted flush on continuous panels or plates. To install a module: - 1. Orient the module with the field connector facing out. - 2. Align the angled surface on the top rear corner with panel or plate the DIN rail is mounted to. - 3. Slide the module down to capture the DIN rail with the hook on the module. - 4. Rotate the module and snap in place To remove a module, reverse the steps in the installation process. If space is available, the clip at the bottom of the module can be squeezed by hand to release. For tight installations, insert a flat blade screwdriver into the recess in the clip (5), place the shaft of the screwdriver against the curved part of the clip and gently pry the clip to release (6). Figure 2: Installation and Removal Multiple rows of MAQ[®]20 modules can be mounted at a 3U vertical spacing interval. Backbones can be combined to add I/O modules to a system. A system is only allowed to have one MAQ20-COMx module. Some possible configurations in a 19" rack are shown. Figure 3: Possible System Configurations # 6.0 Building a System An automated I/O module registration process reduces system setup to three basic steps: #### STANDARD SETUP PROCESS - 1.) Install a MAQ20-BKPLx backbone in a DIN rail then insert a MAQ20-COMx module in the left-most position and apply power. - 2.) Install any MAQ[®]20 I/O Module in any vacant local or remote backbone position. Observe that the green Power LED is on and communications activity is seen on the TX and RX LEDs. Allow 1 second for registration. This module has now been assigned Registration Number 1. - Label and connect field wiring to the I/O Module. If desired, record module physical position in the system. - 3.) Repeat Step 2 for all remaining MAQ®20 I/O modules in the system. Subsequent modules installed are assigned Registration Number 2, 3, etc. The Registration Number sequence matches the physical sequence of module installation. #### ALTERNATE SETUP PROCESS - 1.) Do not apply power. Install a MAQ20-BKPLx backbone in a DIN rail then insert a MAQ20-COMx module in the left-most position and install all required MAQ®20 I/O modules in any vacant local or remote backbone position. Label and connect field wiring to the I/O Module and if desired record physical position in the system. - 2.) Apply system power and observe that each module has the green Power LED on and communications activity is seen on the TX and RX LEDs. Allow 5 seconds for full system registration. All modules have now been assigned Registration Numbers, but in a random sequence not associated with the physical position on the backbone. #### NOTES: Once the registration process is complete, Registration Numbers are permanent as long as I/O modules are not removed from or added to a system. When system power is cycled or the system is reset, I/O module Registration Numbers will always remain the same. I/O modules in a system are identified in general by their model number (MAQ20-VDN, MAQ20-JTC, etc.) and uniquely by their Serial Number printed on the side label (i.e. 1234567-89). When I/O modules are installed in the system, only a general identifier is visible on the front of the module (V, I, TCPL, etc.). Wire tags or additional labeling applied to the module terminal block may be used for visible unique identification in an installed system. MAQ20-940 - ReDAQ Shape Software for MAQ®20 automatically assigns tag names to each input and output channel. These can be changed by the customer to associate channels with input wiring or parameters measured and controlled. The system does not identify I/O modules by physical position on a backbone, only by registration sequence. MAQ20-940 - ReDAQ Shape Software for MAQ®20 and MAQ20-945 - MAQ®20 Configuration Software Tool provided by Dataforth show a graphical representation of a system based on registration sequence and not by physical position. Tools within each software package allow the user to reassign Registration Numbers thereby making graphical representations match physical location for a single, local backbone. For further details, see Section 9.0. Module Detect: A write to the Module Detect Register at I/O module address 98 plus the module offset based on Registration Number will blink the STAT LED on the top angled surface of the module at a 5Hz rate for 5 seconds so the module location in a system can be visually identified. # 7.0 Maintaining a System The MAQ20-COMx Communications Module periodically scans the system and will detect if a MAQ®20 I/O module has been removed from the system or has lost communications. When this happens the module Registration Number will be released and available for reassignment. Standard system maintenance involves a simple three step process: #### STANDARD MAINTENANCE PROCESS - 1.) Turn system power on and observe communications activity on the I/O modules. - 2.) CASE 1: I/O module is suspected faulty and is to be replaced with the same model number Remove a single MAQ[®]20 I/O module from any local or remote backbone position. Replace the module with another of the same model number. This module can be installed in any vacant local or remote backbone position. Observe that the green Power LED is on and communications activity is seen on the TX and RX LEDs. Allow 1 second for registration. This module now has the same Registration Number as the one removed. # CASE 2: I/O module is to be replaced with another having a different model number Remove a single MAQ[®]20 I/O module from any local or remote backbone position. Replace the module with another having a different model number. This module can be installed in any vacant local or remote backbone position. Observe that the green Power LED is on and that there is communications activity on the TX and RX LEDs. Allow 1 second for registration. This module now has the same Registration Number as the one removed. Label and connect input/output wiring to the I/O module and if desired record physical position in the system. 3.) Repeat Step 2 for any remaining MAQ®20 I/O modules in the system requiring maintenance. #### ALTERNATE MAINTENANCE PROCESS - 1.) With system power off, remove any I/O modules which are to be replaced. Replace the modules with others of the same or different model numbers. Modules can be installed in any vacant local or remote backbone position. - Label and connect input/output wiring to the I/O module and if desired record physical position in the system. - 2.) Apply system power and observe that each module has the green Power LED on and communications activity is seen on the TX and RX LEDs. Allow 5 seconds for full system registration. Replaced modules have now been assigned the Registration Numbers of those removed, but in a random sequence not associated with the physical position on the backbone. Modules which were not replaced retain their assigned Registration Numbers. #### NOTES: Once the registration process is complete, Registration Numbers are permanent as long as I/O modules are not removed from or added to a system. When system power is cycled or the system is reset, I/O module Registration Numbers will always remain the same. Tools within MAQ20-940 - ReDAQ Shape Software for MAQ®20 and MAQ20-945 - MAQ®20 Configuration Software Tool allow the user to reassign Registration Numbers. For further details, see Section 9.0. Module Detect: A write to the Module Detect Register at I/O module address 98 plus the module offset based on Registration Number will blink the STAT LED on the top angled surface of the module at a 5Hz rate for 5 seconds so the module location in a system can be visually identified. # 8.0 Expanding a System The MAQ20-COMx Communications Module periodically scans the system and will detect if a MAQ®20 I/O module has been added. When this happens the next available sequential Registration Number is assigned to the module. Standard system expansion involves a simple three step process: #### STANDARD EXPANSION PROCESS - 1.) Turn system power on and observe communications activity on the I/O modules. - 2.) Add a single MAQ[®]20 I/O module in any local or remote backbone position. Observe that the green Power LED is on and communications activity is seen on the TX and RX LEDs. Allow 1 second for registration. This module has now been assigned the next available sequential Registration Number. - Label and connect input/output wiring to the I/O module and if desired record physical position in the system. - 3.) Repeat Step 2 for all remaining MAQ[®]20 I/O modules to be added to the system. Subsequent modules installed are assigned the next sequential Registration Number. #### ALTERNATE EXPANSION PROCESS - 1.) With system power off, install all additional MAQ®20 I/O modules in any vacant local or remote backbone positions. Label and connect field wiring to the I/O module and if desired record physical position in the system. Do not apply power. - 2.) Apply system power and observe that each module has the green Power LED on and communications activity is seen on the TX and RX LEDs. Allow 5 seconds for full system registration. Added modules have now been assigned the next available sequential Registration Numbers, but in a random sequence not
associated with the physical position on the backbone. Modules previously installed and registered in the system retain their assigned Registration Numbers. #### NOTES: Once the registration process is complete Registration Numbers are permanent as long as I/O modules are not removed from or added to a system. When system power is cycled or the system is reset, I/O module Registration Numbers will always remain the same. Tools within MAQ20-940 - ReDAQ Shape Software for MAQ®20 and MAQ20-945 - MAQ®20 Configuration Software Tool allow the user to reassign Registration Numbers. For further details, see Section 9.0. Module Detect: A write to the Module Detect Register at I/O module address 98 plus the module offset based on Registration Number will blink the STAT LED on the top angled surface of the module at a 5Hz rate for 5 seconds so the module location in a system can be visually identified. DATAFORTH ® # 9.0 MAQ[®]20 I/O Module Registration The MAQ®20 Data Acquisition System uses an automated registration process which periodically scans the system and will detect when MAQ®20 I/O modules are added and removed. Modules are assigned a sequential Registration Number based on the order in which they are detected. This order can be forced to occur in a given sequence by adding modules one at a time or it can be allowed to happen randomly. For further details, see Sections 6.0, 7.0 and 8.0. The system <u>does not identify I/O modules by physical position on a backbone</u>, only by registration sequence. MAQ20-940 - ReDAQ Shape Software for MAQ®20 and MAQ20-945 - MAQ®20 Configuration Software Tool provided by Dataforth show a graphical representation of a system <u>based on registration sequence and not by physical position</u>. Tools within each software package allow the user to reassign Registration Numbers thereby making graphical representations match physical location for a single, local backbone. Module Detect: A write to the Module Detect Register at I/O module address 98 plus the module offset based on Registration Number will blink the STAT LED on the top angled surface of the module at a 5Hz rate for 5 seconds so the module location in a system can be visually identified. Each module is assigned an address space of 2000 addresses based on the Registration Number and starting at address 2000. I/O module with Registration Number 1 is assigned address space 2000 – 3999, I/O module with Registration Number 2 is assigned address space 4000 – 5999 and so on. The starting address for the module is very important because this is the offset address that must be added to the addresses listed in the I/O module address map to know where data for that module is located within the system level address map. The MAQ20-COMx Communication Module is always assigned a Registration Number of 0. The Address Map for the MAQ20-xTC Types J, K, T, R and S Thermocouple Input Modules is found at the end of this manual. An excerpt from the Address Map is shown below. Channel Data is stored starting at address 1000. NOTE: When a module is registered in a system, addresses are offset by 2000 * R, where R is the Registration Number. Refer to Section 9.0 for further details on Registration Number. | | Address Range 1000 - 1699 : Module Data | | | | | | | | | | |---|---|--|--------------|-------------------------|--------------|-------|--|--|--|--| | Start Read/ Number of Address Write Registers Contents Description Data Range | | | | | Data
type | | | | | | | 1000 | 1000 R/W 8 | | Channel Data | Data for all 8 Channels | See Table 4 | INT16 | | | | | Example: A MAQ20-KTC module with serial number 1234567-89 is installed in a system and has been assigned a Registration Number of 6. Read Current Data from Channels 0-7. The MAQ20-KTC module with s/n 1234567-89 has an address offset of 2000 * 6 = 12000 Read from register addresses 12000 + 1000 to 1007 = 12000 to 12007 the Current Data from Channels 0-7. The MAQ20-940 - ReDAQ Shape Software for MAQ[®]20 and MAQ20-945 - MAQ[®]20 Configuration Software Tool both have a utility which allows the user to reassign Registration Numbers to I/O Modules in a system. This can be used to rearrange the way I/O modules are displayed in the software if the Alternate Registration Processes have been used instead of the Standard Registration Processes. These are both described in Sections 6.0, 7.0 and 8.0. Graphical representations of a system in the ReDAQ Shape and Configuration Software Tool display I/O modules sequentially in the order they were registered. The display does not represent physical position and will not show vacant positions between I/O modules. The ReDAQ Shape graphic shows a 24 position backbone regardless of the backbone or combination of backbones used in a system. When using the Configuration Software Tool, the registration sequence is presented on the main screen as shown in Figure 4. Figure 4: Module Registration using MAQ20-945 Configuration Software Tool Registration Numbers are listed in the left column. To change the Registration Number of an I/O module, click the box with the Registration Number in the left column, select the 'Reorder Modules' box, then use the Up and Down buttons to move the module within the sequence. The system automatically reassigns the I/O modules above and below the one moved. Repeat for other modules if desired. The MAQ20-COMx module always has Registration Number 0 and cannot be moved. Press 'Save' to save the configuration. The new registration sequence is permanent as long as I/O modules are not removed from or added to a system. ReDAQ Shape Software for MAQ[®]20 presents a graphical representation of the system on the Acquire panel as shown in Figure 5. Figure 5: MAQ20-940 ReDAQ Shape for MAQ®20 Main Configuration Screen To view the registration sequence, double-click on the MAQ20-COMx graphic as shown in Figure 6. | ıp Mc | odules Slot Setup 0 | COM SD Memory Ca | rd | | | | | | | |-------|-----------------------|------------------|------------------------|---|-----------------|------------------|--------|--------|----| | Uc | Down S | ave h | AAQ20-COM4 Serial Numb | er: 0074249-02, Date Co | ndo: D0612 Eirm | wara warajan: E1 | 10 | | | | UL | Slot Number | Start Address | Board Description | Serial Number | Date Code | Firmware | | 0.1.1 | T. | | | 1 | // | | 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | 1,000,000 | 1 - 20000 - 2000 | Inputs | Output | | | | 1 | 2000 | MAQ20JTC | 0080066-02 | D0512 | F1.06 | 8 | 0 | - | | | 2 | 4000 | MAQ20VDN | 0080067-12 | D0712 | F1.06 | 8 | 0 | - | | | 3 | 6000 | MAQ20V0 | 0074061-10 | D0312 | F1.02 | 0 | 8 | 4 | | | 4 | 8000 | MAQ20DIOL | 0074048-31 | D0112 | F1.06 | 5 | 5 | | | | 5 | 10000 | MAQ20MVDN | 0080717-08 | D1212 | F1.11 | 8 | 0 | | | | 6 | 12000 | MAQ20VSN | 0080511-03 | D0213 | F1.11 | 16 | 0 | | | Þ. | 7 | 14000 | MAQ20VSN | 0080511-02 | D0213 | F1.11 | 16 | | | | | 8 | 16000 | MAQ20VSN | 0080511-01 | D0213 | F1.11 | 16 | 0 | 1 | | | 9 | 9 | | 1 (3 | | 100 | 100 | | Ī. | | | 10 | | | | | | 19 | 1 | | | | 11 | | | | | | | | | | | 12 | 7 | | | Ĭ | | | 17 | | | | 13 | | | | 6 | i i | G. | 100 | | | | 14 | 9 | | 1 | 10 | 10 | - 1 | | | | | 15 | | | | | | | | | | | 16 | | + | | - | - | - | - | 1 | Figure 6: Module Registration using MAQ20-940 ReDAQ Shape for MAQ20 Registration Numbers are listed in the left column. To change the Registration Number of an I/O module, click the box in the left column next to the Registration Number, then use the Up and Down buttons to move the module within the sequence. The system automatically reassigns the I/O modules above and below the one moved. Repeat for other modules if desired. The MAQ20-COMx module always has Registration Number 0 and cannot be moved. Press 'Save' to save the new configuration. The new registration sequence is permanent as long as I/O modules are not removed from or added to a system. # 10.0 Range Selection and Channel Enable The MAQ20-JTC, -KTC, -TTC and -RSTC modules have two to four user selectable input ranges depending on model. Input ranges are selectable on a per-channel basis. Over-range and Underrange up to 2% beyond the standard input values will be measured. Sensor linearization is performed in the module and published accuracy is guaranteed over the standard input ranges. The Range Table following the Address Map at the end of this manual shows the input ranges for each module and the input temperature to counts mapping. An excerpt from Range Table for the MAQ20-KTC module is shown below for reference. | | Range | Standard Input
Temperature | Equivalent
Counts | Over/Under Range | Equivalent
Counts | Deg C per
Count | |----------------|-------|--------------------------------|----------------------|-------------------|----------------------|--------------------| | ار | 0 | -100°C to +1350°C
(Default) | -303 to 4095 | -102°C to +1377°C | -309 to 4177 | 0.3296 | | \overline{z} | 1 | -100°C to +651°C | -607 to 3950 | -102°C to +664°C | -619 to 4029 | 0.1648 | | | 2 | -100°C to +332°C | -1214 to 4029 | -102°C to +339°C | -1238 to 4110 | 0.0824 | The Address Map for the MAQ20-xTC Type x Thermocouple Input Modules is found at the end of this manual. An excerpt from the Address Map is shown below. Input Range is stored starting at address 100, Channel Enable is stored starting at address 140, and Channel Data is stored starting at address 1000. NOTE: When a module is registered in a system, addresses are offset by 2000 * R, where R is the Registration Number. Refer to Section 9.0 for further details on Registration Number. | | Address Range 100 - 699 : Module Configuration | | | | | | | | | | |---|--|----------|------------------------|----------------------------------
--------------|-------|--|--|--|--| | Start Read/ Number of Address Write Registers | | Contents | Description Data Range | | Data
type | | | | | | | 100 | R/W | 8 | Input Range | Range for each of 8 channels | See Table 4 | INT16 | | | | | | 140 | R/W | 8 | Channel Enable | 0 = Disable 1 = Enable (default) | 0 or 1 | INT16 | | | | | | Address Range 1000 - 1699 : Module Data | | | | | | | | | | |---|-----|------------------------|--------------|--------------------------------|-------------|--------------|--|--|--| | Start
Address | | Number of
Registers | Contents | Description | Data Range | Data
type | | | | | 1000 | R/W | 8 | Channel Data | Data for each of 8
Channels | See Table 4 | INT16 | | | | To change the input range, write the appropriate range code to address 100 + 2000 * R. Channels in a module can be selectively enabled for scanning. By default, all channels are enabled. Non-used channels may be disabled to increase sampling rate of enabled channels. To disable a channel, write a 0 to the appropriate register starting at address 140 + 2000 * R. To enable a channel, write a 1 to this register. Once a range selection is made it can be saved to EEPROM. Standard Reset does not affect the setting in volatile memory. Reset-to-Default will clear the setting in volatile memory and reset the ranges to the default values. Settings stored to EEPROM are not affected by Standard Reset or Reset-to-Default. Module power cycle will restore range settings from EEPROM. Example: A MAQ20-KTC module with serial number 1234567-89 is installed in a system and has been assigned a Registration Number of 2. Set channels 0 and 1 to measure -100 to 651°C, channels 4 and 5 to measure -100 to 332°C, and disable channels 2, 3, 6 and 7. Obtain the current readings in counts and convert these to Engineering units. The MAQ20-KTC module with s/n 1234567-89 has an address offset of 2000 * 2 = 4000 The default module configuration is all channels enabled and all channels with range -100 to +1350°C. The table shows that Range 1 is -100 to 651°C in and Range 2 is -100 to 332°C in. Range information is also stored in registers at addresses 1700 – 1780 for user read back if desired. ``` Write to register address 4000 + 100 = 4100 a data value of 1 to set Ch 0 input range -100 to 651°C Write to register address 4000 + 101 = 4101 a data value of 1 to set Ch 1 input range -100 to 651°C Write to register address 4000 + 104 = 4104 a data value of 2 to set Ch 4 input range -100 to 332°C Write to register address 4000 + 105 = 4105 a data value of 2 to set Ch 5 input range -100 to 332°C ``` ``` Write to register address 4000 + 142 = 4142 a data value of 0 to disable Channel 2 Write to register address 4000 + 143 = 4143 a data value of 0 to disable Channel 3 Write to register address 4000 + 146 = 4146 a data value of 0 to disable Channel 6 Write to register address 4000 + 147 = 4147 a data value of 0 to disable Channel 7 ``` ``` Read from register address 4000 + 1000 = 5000 the data from Channel 0 Read from register address 4000 + 1001 = 5001 the data from Channel 1 Read from register address 4000 + 1004 = 5004 the data from Channel 4 Read from register address 4000 + 1005 = 5005 the data from Channel 5 ``` If the data read from Channel 0 is 3120 counts and the data read from Channel 4 is -133 counts, the input signals are: ``` Ch 0: 3120 \text{ counts} * (651^{\circ}\text{C} - -100^{\circ}\text{C}) / (3950 \text{ counts} - -607 \text{ counts}) = +514.2^{\circ}\text{C} Ch 4: -133 \text{ counts} * (332^{\circ}\text{C} - -100^{\circ}\text{C}) / (4029 \text{ counts} - -1214 \text{ counts}) = -10.96^{\circ}\text{C} ``` #### 11.0 Alarm Functions The powerful alarm functions in the MAQ®20 Data Acquisition System provide essential monitoring and warnings to ensure optimum process flow and fail-safe applications. Alarms have the following parameters which can be configured: #### **Alarm Enable** Enables the Alarm on a given channel provided that the Alarm Configuration Register has a valid configuration. Set the bit corresponding to the given channel to a 1 to enable the alarm. If the Alarm Configuration register for the given channel does not have a valid value, the write will be ignored and the Alarm Enable bit will remain 0. Write a 0 to the bit corresponding to the given channel to disable the alarm and clear any alarms that have tripped. # **Alarm Configuration** Selects Tracking or Latching alarms for a given channel and selects which limits trip the alarm - High, Low, High-High or Low-Low. There is a register for each channel. The value written to this register is the sum of the codes for the Alarm Type and Alarm Limits. Refer to Section 12.0 for the specific codes. If an invalid value is written to this register, the value will be ignored and the last valid value that the register contained will be kept. If a 0 is written to the register, the Alarm Enable register for the channel will be set to 0 and alarms that the channel has tripped will be cleared. Tracking alarms follow the value of the input signal and reset automatically when the signal comes back into the valid range specified by the limit and deadband. Latching alarms trip when the signal exceeds the alarm condition and remain set until reset by the user. #### **High Limit** Sets the value for the High limit in counts. Alarm status is stored in a register. #### **Low Limit** Sets the value for the Low limit in counts. Alarm status is stored in a register. #### **High Low Deadband** Used for the High and/or Low limits to prevent false tripping or alarm chatter for noisy signals. Deadband is the region less than the High limit or greater than the Low limit, measured in counts, which the signal must traverse through before the alarm is reset after being tripped. #### **High-High Limit** Sets the value for the High-High limit in counts. Alarm status is stored in a register. #### **Low-Low Limit** Sets the value for the Low-Low limit in counts. Alarm status is stored in a register. # **High-High Low-Low Deadband** Used for the High-High and/or Low-Low limits to prevent false tripping or alarm chatter for noisy signals. Deadband is the region less than the High-High limit or greater than the Low-Low limit, measured in counts, which the signal must traverse through before the alarm is reset after being tripped. See Figure 7 below for graphical representations of alarm parameters and functionality. - 1. High Alarm Tripped - 2. Low Alarm Tripped - 1. High Alarm Tripped - 2. High Alarm Reset - 3. Low Alarm Tripped - 4. Low Alarm Reset - 1. High Alarm Trip - 2. High-High Alarm Trip - 3. High-High Alarm Reset - 4. High Alarm Reset - 5. Low Alarm trip - 6. Low-Low Alarm Trip - 7. Low-Low Alarm Reset - 8. Low Alarm Reset - 1. High Alarm Trip - 2. High Alarm Reset Figure 7: Alarm Parameters and Functionality # 12.0 Setting and Monitoring Alarms The Address Map for the MAQ20-xTC Type x Thermocouple Input Modules is found at the end of this manual. An excerpt from the Address Map is shown below. Alarm parameters are stored in registers at addresses 700 – 999. NOTE: When a module is registered in a system, addresses are offset by 2000 * R, where R is the Registration Number. Refer to Section 9.0 for further details on Registration Number. | | Address Range 700 - 999 : Alarm Configuration | | | | | | | | | |------------------|---|---------------------|----------------------------|--|-------------|--------------|--|--|--| | Start
Address | Read/
Write | Number of Registers | Contents | Description | Data Range | Data
type | | | | | 700 | R/W | 1 | Alarm Status,
Low-Low | To clear a Latched alarm write a 0 to the corresponding channel bit. | 0 to 65,535 | INT16 | | | | | 701 | R/W | 1 | Alarm Status,
Low | To clear a Latched alarm write a 0 to the corresponding channel bit. | 0 to 65,535 | INT16 | | | | | 702 | R/W | 1 | Alarm Status,
High | To clear a Latched alarm write a 0 to the corresponding channel bit. | 0 to 65,535 | INT16 | | | | | 703 | R/W | 1 | Alarm Status,
High-High | To clear a Latched alarm write a 0 to the corresponding channel bit. | 0 to 65,535 | INT16 | | | | | 704 | R/W | 1 | Alarm Enable | 1 = Enabled 0 = Disabled | See below | INT16 | | | | | 710 | R/W | 8 | Alarm Config | Alarm Configuration | See below | INT16 | | | | | 730 | R/W | 8 | High Limit | High Alarm Limit | See Table 4 | INT16 | | | | | 750 | R/W | 8 | Low Limit | Low Alarm Limit | See Table 4 | INT16 | | | | | 770 | R/W | 8 | High Low DB | Deadband for High Low
Alarm | See Table 4 | INT16 | | | | | 790 | R/W | 8 | High-High Limit | High-High Alarm Limit | See Table 4 | INT16 | | | | | 810 | R/W | 8 | Low-Low Limit | Low-Low Alarm Limit | See Table 4 | INT16 | | | | | 830 | R/W | 8 | High-High
Low-Low DB | Deadband for High-High
Low-Low Alarm | See Table 4 | INT16 | | | | Alarms are configured by writing a code to the register at address $710 + 2000 \,^{*}$ R and then enabled and disabled by writing a 1 or 0 to the register at address $704 + 2000 \,^{*}$ R. Alarm Status is stored in registers at address range 700 - 703, offset by $2000 \,^{*}$ R. The code written to address $710 + 2000 \,^{*}$ R is the sum of a number representing the type of alarm and a number representing the alarm limits to be monitored. # Alarm Configuration Value = Alarm Type Code + Alarm Limit Code | Alarm Type | Code | Alarm Limit | Code | |------------|------|-------------------------|------| | Tracking | 1000 | Low Limit | 100 | | Latching | 2000 | High Limit | 200 | | | | High Low Limit | 300 | | | | Low-Low Limit | 400 | | | | High-High Limit | 500 | | | | High-High Low-Low Limit | 600 | If the Alarm Configuration Value = 0, the Alarm is Off (Disabled). The Alarm for a given channel cannot be turned On (Enabled) until a valid, non-zero value is written
to the Alarm Configuration register. Example: A MAQ20-KTC module with serial number 1234567-89 is installed in a system and has been assigned a Registration Number of 3. Set up the module to have a Tracking Alarm on Channel 1 with a High limit of 3000 counts, a Low limit of 500 counts and a Deadband of 100 counts. The MAQ20-KTC module with s/n 1234567-89 has an address offset of 2000 * 3 = 6000 Write to register address 6000 + 711 = 6711 a value of 1000 + 300 = 1300 to set a Tracking Alarm with High Low limits Write to register address 6000 + 731 = 6731 a data value of 3000 to set the High limit Write to register address 6000 + 751 = 6751 a data value of 500 to set the Low limit Write to register address 6000 + 771 = 6711 a data value of 100 to set the Deadband for the High and Low limits Write to register address 6000 + 704 = 6704 the equivalent of bit code 0000 0010 = 3 to enable the alarm on Channel 1 When an alarm condition is reached as specified by the above parameters, the Alarm Status registers are written in response to the events and the red LED on the module is lit. Read register address 6000 + 701 = 6701 to view the status of the Low Alarm. If bit code $0000\ 0010 = 3$ is read, a Low Alarm has occurred on Channel 1. Read register address 6000 + 702 = 6702 to view the status of the High Alarm # 13.0 Signal Averaging Signal averaging can be set on a per-channel basis by configuring the Average Weight. Average Weight is calculated as 2^x where x = 0 to 15 and the default value is x = 0. The running average is then calculated as follows: Average = Average + ((Sampled Value – Average) / Average Weight) The Address Map for the MAQ20-xTC Type x Thermocouple Input Modules is found at the end of this manual. An excerpt from the Address Map is shown below. Signal averaging parameters are stored in registers at addresses 120 – 127. NOTE: When a module is registered in a system, addresses are offset by 2000 * R, where R is the Registration Number. Refer to Section 9.0 for further details on Registration Number. | | Address Range 100 - 699 : Module Configuration | | | | | | | | | | |-----|---|---|------------|----------------------------|---------|-------|--|--|--|--| | | Start Read/ Number of Address Write Registers Contents Description Data Range | | | | | | | | | | | 120 | R/W | 8 | AVG Weight | Weight for AVG Calculation | 0 to 15 | INT16 | | | | | | Address Range 1000 - 1699 : Module Data | | | | | | | | | |---|----------------|---------------------|----------------|----------------------------------|--------------|--------------|--|--| | Start
Address | Read/
Write | Number of Registers | Contents | Description | Data Range | Data
type | | | | 1000 | R/W | 8 | Channel Data | Data for all 8 Channels | See Table 4 | INT16 | | | | 1016 | R/W | 1 | Alarm Status | Status of Low-Low Alarm | 0 to 65,535 | INT16 | | | | 1017 | R/W | 1 | Alarm Status | Status of Low Alarm | 0 to 65,535 | INT16 | | | | 1018 | R/W | 1 | Alarm Status | Status of High Alarm | 0 to 65,535 | INT16 | | | | 1019 | R/W | 1 | Alarm Status | Status of High-High Alarm | 0 to 65,535 | INT16 | | | | 1020 | R | 1 | Temp Sensor | Each bit = 0.0625 deg C | -720 to 1360 | INT16 | | | | 1030 | R/W | 8 | Min Data | Min for 8 Chan | See Table 4 | INT16 | | | | 1050 | R/W | 8 | Max Data | Max for 8 Chan | See Table 4 | INT16 | | | | 1070 | R/W | 8 | Avg Data | Average for 8 Chan | See Table 4 | INT16 | | | | 1090 | R/W | 8 | Channel 0 Data | Last 8 readings for Channel 0 | See Table 4 | INT16 | | | | 1100 | R/W | 8 | Channel 1 Data | Last 8 readings for Channel 1 | See Table 4 | INT16 | | | | 1110 | R/W | 8 | Channel 2 Data | Last 8 readings for Channel 2 | See Table 4 | INT16 | | | | 1120 | R/W | 8 | Channel 3 Data | Last 8 readings for Channel 3 | See Table 4 | INT16 | | | | 1130 | R/W | 8 | Channel 4 Data | Last 8 readings for Channel 4 | See Table 4 | INT16 | | | | 1140 | R/W | 8 | Channel 5 Data | Last 8 readings for Channel 5 | See Table 4 | INT16 | | | | 1150 | R/W | 8 | Channel 6 Data | Last 8 readings for Channel 6 | See Table 4 | INT16 | | | | 1160 | R/W | 8 | Channel 7 Data | Last 8 readings for
Channel 7 | See Table 4 | INT16 | | | Example: A MAQ20-KTC module with serial number 1234567-89 is installed in a system and has been assigned a Registration Number of 4. Set the Average Weight of Channel 4 to 8, then read the following parameters for Channel 4: Current Data, Min Data, Max Data, Average Data and the last 8 readings. The MAQ20-KTC module with s/n 1234567-89 has an address offset of 2000 * 4 = 8000 Write to register address 8000 + 124 = 8124 a data value of 8 to set the Average Weight Read from register address 8000 + 1034 = 9034 the min data from Channel 4 Read from register address 8000 + 1054 = 9054 the max data from Channel 4 Read from register address 8000 + 1074 = 9074 the average data from Channel 4 with weight 8 Read from register address 8000 + 1130 to 1137 = 9130 - 9137 the last 8 readings from Channel 4 #### 14.0 Reset Functions Two types of firmware reset are supported in the MAQ®20 I/O modules: Standard Reset is used to put the module in a user-defined state. The parameters listed below will be set to the last state saved to EEPROM. Parameters stored in EEPROM are not affected. Reset-to-Default reverts the module to the settings used at the factory during manufacture. It performs the standard reset actions plus resets most non-volatile parameters to default settings. Parameters stored in EEPROM are not affected. Table 2 shows what parameters are affected for each reset. Table 2: Parameters Affected by Standard Reset and Reset-to-Default | RESET TYPE | PARAMETERS | |------------------|---| | Standard Reset | Disables all Alarms Resets Min, Max and Average registers to 0 Clears all Status and Diagnostic registers | | Reset-to-Default | All parameters listed under Standard Reset, plus:
Clears all Alarm Limits and Deadbands | #### **Reset Registers** Writing a valid data value to the Reset Register will force the module to perform a specified reset. Write 0 to perform Standard Reset and write 255 to perform Reset-to-Default. NOTE: The MAQ[®]20 I/O modules send a response to the reset register write before carrying out the reset. This means the module will be unresponsive to commands for approximately 3 seconds. #### Power-On-Reset (POR) and Brownout MAQ[®]20 I/O modules utilize a brown-out detect circuit and watchdog timer to ensure reliable and predictable operation under all conditions. Upon power cycle, brown-out detect or any extreme circumstance under which the watchdog timer expires, a Standard Reset is performed and parameters stored in EEPROM are loaded to the appropriate registers. # 15.0 Module Identification and Status Registers Module identification including model number, serial number, date code and firmware revision are stored in registers at addresses 0 - 44. I/O modules in a system are identified in general by their model number (MAQ20-VDN, MAQ20-JTC, etc.) and uniquely by their Serial Number printed on the side label (1234567-89). When I/O modules are installed in the system, only a general identifier is visible on the front of the module (V, I, TCPL, etc.). Wire tags or additional labeling applied to the module terminal block may be used for visible unique identification in an installed system. Additionally, the system has a utility to provide a visible indication of module response for identification. Any write to address 98 plus the offset based on the Registration Number will blink the STATUS LED on the top angled surface of the module at a 5Hz rate for 5 seconds. For troubleshooting purposes, reset status, communications errors, and invalid data written to a module is monitored and made available to the user. Registers at addresses 1900 – 1910 hold this information. # 16.0 LED Indicators A set of 5 LEDs on the top panel of the MAQ®20 I/O modules indicate module power, operation, communication and alarm status. #### **LED Function and Troubleshooting Tips:** #### **PWR** Normal operation: BLUE, solid lit LED Off: Abnormal power situation - Verify that a MAQ20-COMx is present in system - Verify that the MAQ20-COMx module has 7-34VDC power connected and turned on - Determine if the module is communicating by observing the TX and RX LEDs #### STAT Normal operation: GREEN, 1 Hz blinking Module Detect: A write to the Module Detect Register will force this LED to blink at 5Hz rate for 5 seconds so the module location in a system can be visually identified. Referring to the Address Map, this register is at address 98 off of the module base address. LED Constant On or Constant Off: Abnormal operation - Remove and reinstall module to force a reset - Remove and reinstall module into another backbone position - Determine if the module is communicating by observing the TX and RX LEDs #### RX, TX Normal Operation - YELLOW, rapid blinking during communication with MAQ20-COMx module LED Constant Off: Abnormal operation or no communications to MAQ20-COMx module - Verify communications by sending a request for data. Note that the fast communications rate used on the system backbone will result in the LED appearing dim due to short blinking cycle - Verify that the PWR and STAT LED indicate normal operation - Verify that there is only one MAQ20-COMx module installed in the system #### ALM Normal operation: Off Alarm Condition Detected: RED, solid lit. - One or more alarms have been tripped. - Read Alarm Registers based on Alarm Configuration to determine system status The following troubleshooting tips can be used to further diagnose and fix system problems: - Remove and reinstall MAQ[®]20 I/O module and/or MAQ20-COMx module to verify proper insertion into Backbone - Remove and reinstall
MAQ[®]20 I/O module into another backbone position - If a Backbone extension cable is used, ensure that the connections are made correctly # 17.0 Specifications | MAQ®20 THERMOCOUPLE INPUT MODULE | Typical at Ta = +25°C and +24V system power | |---------------------------------------|---| | Model Number | Description | | MAQ20-JTC | 8-channel, Type JTC, Differential Input -100°C to +760°C (Default) -100°C to +393°C, -100°C to +199°C | | MAQ20-KTC | 8-channel, Type KTC, Differential Input -100°C to +1350°C (Default) -100°C to +651°C, -100°C to +332°C | | MAQ20-TTC | 8-channel, Type TTC, Differential Input -100°C to +400°C (Default), -100°C to +220°C | | MAQ20-RSTC | 8-channel, Type RTC and Type STC, Differential Input
Type R -100°C to +1750°C (Default), -100°C to +990°C
Type S: -100°C to +1750°C, -100°C to +970°C | | Per Channel Setup
Input Protection | Individually configurable for range, alarms, averaging | | Continuous
Transient | 150Vrms max
ANSI/IEEE C37.90.1 | | CMV | | | Channel-to-Bus | 1500Vrms, 1 min | | Channel-to-Channel | ±3V | | Transient | ANSI/IEEE C37.90.1 | | CMR | 100dB @ 50/60 Hz | | NMR | 26dB @ 50/60 Hz | | Accuracy ⁽¹⁾ | ±0.06% span | | Conformity | ±0.035% span | | Cold Junction Compensation | ±0.25°C @ +25°C, ±1.0°C @ -40°C to +85°C | | Resolution | 0.020% span | | Stability | 45 /20 | | Zero | ±15ppm/°C | | Span | ±35ppm/°C | | Bandwidth
Scan Rate | 3Hz
20 Ch/s | | Alarms | High / High-High / Low / Low-Low | | Open Input Response | Downscale, < 5s, Flag Set | | Power Supply Current | 30mA | | Dimensions (h)(w)(d) | 4.51" x 0.60" x 3.26" (114.6mm x 15.3mm x 82.8mm) | | Environmental | 4.51 × 0.00 × 5.20 (114.011111 × 15.311111 × 62.011111) | | Operating Temperature | -40°C to +85°C | | Storage Temperature | -40°C to +85°C | | Relative Humidity | 0 to 95%, non-condensing | | Emissions, EN61000-6-4 | ISM Group 1 | | Radiated, Conducted | Class A | | Immunity EN61000-6-2 | ISM Group 1 | | RF | Performance A +/- 0.5% Span Error | | ESD, EFT | Performance B | | Certifications | Heavy Industrial CE, ATEX Pending | | | UL Class I, Division 2, Groups A, B, C, D Pending | | | or older i, birioisti z, croupo ri, b, o, b i oliding | ⁽¹⁾ Includes conformity, hysteresis and repeatability. Does not include CJC accuracy. # 18.0 MAQ20-JTC, -KTC, -TTC and -RSTC Address Map and Range Table Tables in this section outline the MAQ20-xTC address space. Data in these registers contains all permanent and user settable information for module configuration, status, operation of all functions, data read/write, and data storage. Table columns list the following information: **Start Address:** Start address for the specified quantity of addresses. The start address is offset by 2000 * R where R is the module Registration Number. Read/Write: Indicates whether data at the address is Read, Write or both. **Number of Registers:** The number of 16 bit registers reserved for the specified contents. **Contents:** Parameter stored at the specified address. Description: Details, examples, limits, and default values for the parameter stored at the specified address. **Data Range:** Valid data read from or written to an address range. Data not in this range which is written to an address may return a Modus Exception 3, Illegal Data, or may be ignored. **Data Type:** The type of data stored at the specified address. ASCII 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz, -, " " INT16 16 bit integer value, 0 to 65535, unless otherwise indicated. Stored at a single address. INT32 32 bit integer value, 0 to 4294967295, unless otherwise indicated. Stored at two 16 bit addresses. MSB is stored at address N, LSB is stored at address N+1. Table 3: MAQ20-JTC, -KTC, -TTC, -RSTC Address Map NOTE: When a module is registered in a system, addresses are offset by 2000 * R, where R is the Registration Number. Refer to Section 9.0 for further details on Registration Number. | | Address Range 0 - 99 : Module Information | | | | | | |------------------|---|---------------------|-----------------------|---|--|--------------| | Start
Address | Read/
Write | Number of Registers | Contents | Description | Data Range | Data
type | | 0 | R | 15 | Device
Description | MAQ20-xTC | Characters,
Numbers, "-"
and Space | ASCII | | 19 | R | 11 | Serial Number | S1234567-89 | Characters,
Numbers, "-"
and Space | ASCII | | 30 | R | 5 | Date Code | D1510 | Characters,
Numbers | ASCII | | 35 | R | 5 | Firmware Rev | F1.00 | Characters,
Numbers and
"." | ASCII | | 40 | R | 1 | Input Channels | 8 Input Channels | 8 | ASCII | | 41 | R | 1 | Output
Channels | 0 Output Channels | 0 | ASCII | | 98 | W | 1 | Module Detect | Any write will blink Status
LED at 5Hz for 5 seconds | 0 to 65,535 | INT16 | | 99 | W | 1 | Reset Register | 0 = Standard Reset, 255 = Reset to Default | 0, 255 | INT16 | | | Address Range 100 - 699 : Module Configuration | | | | | | | |------------------|--|------------------------|----------------|----------------------------------|-------------|--------------|--| | Start
Address | Read/
Write | Number of
Registers | Contents | Description | Data Range | Data
type | | | 100 | R/W | 8 | Input Range | Range for each of 8 channels | See Table 4 | INT16 | | | 119 | W | 1 | Save to EEPROM | 0 = Gain, Avg Weight, Scan List | 0 | INT16 | | | 120 | R/W | 8 | AVG Weight | Weight for AVG Calculation | 0 to 15 | INT16 | | | 140 | R/W | 8 | Channel Enable | 0 = Disable 1 = Enable (default) | 0 or 1 | INT16 | | | | Address Range 700 - 999 : Alarm Configuration | | | | | | | |------------------|---|---------------------|----------------------------|--|------------------|--------------|--| | Start
Address | Read/
Write | Number of Registers | Contents | Description | Data Range | Data
type | | | 700 | R/W | 1 | Alarm Status,
Low-Low | To clear a Latched alarm write a 0 to the corresponding channel bit. | 0 to 65,535 | INT16 | | | 701 | R/W | 1 | Alarm Status,
Low | To clear a Latched alarm write a 0 to the corresponding channel bit. | 0 to 65,535 | INT16 | | | 702 | R/W | 1 | Alarm Status,
High | To clear a Latched alarm write a 0 to the corresponding channel bit. | 0 to 65,535 | INT16 | | | 703 | R/W | 1 | Alarm Status,
High-High | To clear a Latched alarm write a 0 to the corresponding channel bit. | 0 to 65,535 | INT16 | | | 704 | R/W | 1 | Alarm Enable | 1 = Enabled 0 = Disabled | See Section 12.0 | INT16 | | | 710 | R/W | 8 | Alarm
Configuration | Alarm Configuration | See Section 12.0 | INT16 | | | 730 | R/W | 8 | High Limit | High Alarm Limit | See Table 4 | INT16 | | | 750 | R/W | 8 | Low Limit | Low Alarm Limit | See Table 4 | INT16 | | | 770 | R/W | 8 | High Low DB | Deadband for High Low Alarm | See Table 4 | INT16 | | | 790 | R/W | 8 | High-High
Limit | High-High Alarm Limit | See Table 4 | INT16 | | | 810 | R/W | 8 | Low-Low Limit | Low-Low Alarm Limit | See Table 4 | INT16 | | | 830 | R/W | 8 | High-High
Low-Low DB | Deadband for High-High
Low-Low Alarm | See Table 4 | INT16 | | | | Address Range 1000 - 1699 : Module Data | | | | | | | |------------------|---|---------------------|-----------------|-------------------------------|-------------|--------------|--| | Start
Address | Read/
Write | Number of Registers | Contents | Description | Data Range | Data
type | | | 1000 | R/W | 8 | Channel Data | Data for each of 8 Channels | See Table 4 | INT16 | | | 1016 | R/W | 1 | Alarm Status | Status of Low-Low Alarm | 0 to 65,535 | INT16 | | | 1017 | R/W | 1 | Alarm Status | Status of Low Alarm | 0 to 65,535 | INT16 | | | 1018 | R/W | 1 | Alarm Status | Status of High Alarm | 0 to 65,535 | INT16 | | | 1019 | R/W | 1 | Alarm Status | Status of High-High Alarm | 0 to 65,535 | INT16 | | | 1020 | R | 1 | Temp Sensor 1-4 | Each bit = TBD deg C | TBD | INT16 | | | 1030 | R/W | 8 | Min Data | Min for 8 Chan | See Table 4 | INT16 | | | 1050 | R/W | 8 | Max Data | Max for 8 Chan | See Table 4 | INT16 | | | 1070 | R/W | 8 | Avg Data | Average for 8 Chan | See Table 4 | INT16 | | | 1090 | R/W | 8 | Channel 0 Data | Last 8 readings for Channel 0 | See Table 4 | INT16 | | | 1100 | R/W | 8 | Channel 1 Data | Last 8 readings for Channel 1 | See Table 4 | INT16 | | | 1110 | R/W | 8 | Channel 2 Data | Last 8 readings for Channel 2 | See Table 4 | INT16 | | | | Address Range 1000 - 1699 : Module Data | | | | | | | | |------------------|---|---------------------|----------------|-------------------------------|-------------|--------------|--|--| | Start
Address | | Number of Registers | Contents | Description | Data Range | Data
type | | | | 1120 | R/W | 8 | Channel 3 Data | Last 8 readings for Channel 3 | See Table 4 | INT16 | | | | 1130 | R/W | 8 | Channel 4 Data | Last 8 readings for Channel 4 | See Table 4 | INT16 | | | | 1140 | R/W | 8 | Channel 5 Data | Last 8 readings for Channel 5 | See Table 4 | INT16 | | | | 1150 | R/W | 8 | Channel 6 Data | Last 8 readings for Channel 6 | See Table 4 | INT16 | | | | 1160 | R/W | 8 | Channel 7 Data | Last 8 readings for Channel 7 | See Table 4 | INT16 | | | | Address Range 1700 - 1899 : Input Ranges | | | | | | | | |--|----------------|---------------------|-------------|--|-------------------|--------------|--| | Start
Address | Read/
Write | Number of Registers | Contents | Description | Data Range
 Data
type | | | 1700 | R | 1 | Range Count | Range Count Number of ranges supported | | INT16 | | | 1710 | R | 1 | Range 0 | Engineering -fs. | -32,768 to 32,767 | INT16 | | | 1711 | R | 1 | Range 0 | Future Use | -32,768 to 32,767 | INT16 | | | 1712 | R | 1 | Range 0 | Engineering +fs | -32,768 to 32,767 | INT16 | | | 1713 | R | 1 | Range 0 | Future Use | -32,768 to 32,767 | INT16 | | | 1714 | R | 1 | Range 0 | +fs & -fs multiplier Factor 10^X | -32,768 to 32,767 | INT16 | | | 1715 | R | 1 | Range 0 | Engineering Units ("C", "V", etc) | A to Z | ASCII | | | 1716 | R | 1 | Range 0 | Engineering Units ("C", "V", etc) | A to Z | ASCII | | | 1717 | R | 1 | Range 0 | Future Use | -32,768 to 32,767 | INT16 | | | 1718 | R | 1 | Range 0 | Count Value of -fs. | -32,768 to 32,767 | INT16 | | | 1719 | R | 1 | Range 0 | Future Use | -32,768 to 32,767 | INT16 | | | 1720 | R | 1 | Range 0 | Count Value of +fs. | -32,768 to 32,767 | INT16 | | | 1730 | R | 1 | Range 1 | Engineering -fs. | -32,768 to 32,767 | INT16 | | | 1731 | R | 1 | Range 1 | Future Use | -32,768 to 32,767 | INT16 | | | 1732 | R | 1 | Range 1 | Engineering +fs | -32,768 to 32,767 | INT16 | | | 1733 | R | 1 | Range 1 | Future Use | -32,768 to 32,767 | INT16 | | | 1734 | R | 1 | Range 1 | +fs & -fs multiplier Factor 10^X | -32,768 to 32,767 | INT16 | | | 1735 | R | 1 | Range 1 | Engineering Units ("C", "V", etc) | A to Z | ASCII | | | 1736 | R | 1 | Range 1 | Engineering Units ("C", "V", etc) | A to Z | ASCII | | | 1737 | R | 1 | Range 1 | Future Use | -32,768 to 32,767 | INT16 | | | 1738 | R | 1 | Range 1 | Count Value of -fs. | -32,768 to 32,767 | INT16 | | | 1739 | R | 1 | Range 1 | Future Use | -32,768 to 32,767 | INT16 | | | 1740 | R | 1 | Range 1 | Count Value of +fs. | -32,768 to 32,767 | INT16 | | | 1750 | R | 1 | Range 2 | Engineering -fs. | -32,768 to 32,767 | INT16 | | | 1751 | R | 1 | Range 2 | Future Use | -32,768 to 32,767 | INT16 | | | 1752 | R | 1 | Range 2 | Engineering +fs | -32,768 to 32,767 | INT16 | | | 1753 | R | 1 | Range 2 | Future Use | -32,768 to 32,767 | INT16 | | | 1754 | R | 1 | Range 2 | +fs & -fs multiplier Factor 10^X | -32,768 to 32,767 | INT16 | | | 1755 | R | 1 | Range 2 | Engineering Units ("C", "V", etc) | A to Z | ASCII | | | 1756 | R | 1 | Range 2 | Engineering Units ("C", "V", etc) | A to Z | ASCII | | | 1757 | R | 1 | Range 2 | Future Use | -32,768 to 32,767 | INT16 | | | 1758 | R | 1 | Range 2 | Count Value of -fs. | -32,768 to 32,767 | INT16 | | | 1759 | R | 1 | Range 2 | Future Use | -32,768 to 32,767 | INT16 | | | 1760 | R | 1 | Range 2 | Count Value of +fs. | -32,768 to 32,767 | INT16 | | | 1770 | R | 1 | Range 3 | Engineering -fs. | -32,768 to 32,767 | INT16 | | | 1771 | R | 1 | Range 3 | Future Use | -32,768 to 32,767 | INT16 | | | 1772 | R | 1 | Range 3 | Engineering +fs | -32,768 to 32,767 | INT16 | | | 1773 | R | 1 | Range 3 | Future Use | -32,768 to 32,767 | INT16 | | | | Address Range 1700 - 1899 : Input Ranges | | | | | | | | |------------------|--|------------------------|----------|-----------------------------------|-------------------|--------------|--|--| | Start
Address | | Number of
Registers | Contents | Description | Data Range | Data
type | | | | 1774 | R | 1 | Range 3 | +fs & -fs multiplier Factor 10^X | -32,768 to 32,767 | INT16 | | | | 1775 | R | 1 | Range 3 | Engineering Units ("C", "V", etc) | A to Z | ASCII | | | | 1776 | R | 1 | Range 3 | Engineering Units ("C", "V", etc) | A to Z | ASCII | | | | 1777 | R | 1 | Range 3 | Future Use | -32,768 to 32,767 | INT16 | | | | 1778 | R | 1 | Range 3 | Count Value of -fs. | -32,768 to 32,767 | INT16 | | | | 1779 | R | 1 | Range 3 | Future Use | -32,768 to 32,767 | INT16 | | | | 1780 | R | 1 | Range 3 | Count Value of +fs. | -32,768 to 32,767 | INT16 | | | | | Address Range 1900 - 1999 : Status Registers | | | | | | | |------------------|--|------------------------|---------------|--|-------------|--------------|--| | Start
Address | Read/
Write | Number of
Registers | Contents | Description | Data Range | Data
type | | | 1900 | R/W | 1 | Watchdog Flag | 1 = Watchdog Reset, 0 = Normal | 0 or 1 | INT16 | | | 1901 | R/W | 1 | BrownOut Flag | 1 = BrownOut Reset, 0 = Normal | 0 or 1 | INT16 | | | 1902 | R/W | 1 | I2C Error | I2C TX Error Counter | 0 to 65,535 | INT16 | | | 1903 | R/W | 1 | I2C Error | I2C RX Error Counter | 0 to 65,535 | INT16 | | | 1906 | R/W | 1 | Numeric Error | Increments when a value received is outside of the allowed range | 0 to 65,535 | INT16 | | | 1908 | R/W | 1 | UART RX Error | UART RX Error Counter.
Command Too Short | 0 to 65,535 | INT16 | | | 1909 | R/W | 1 | UART RX Error | UART RX Error Counter. Command Too Long | 0 to 65,535 | INT16 | | | 1910 | R/W | 1 | UART RX Error | UART RX Error Counter. Command received in invalid state | 0 to 65,535 | INT16 | | Table 4: MAQ20-JTC, -KTC, -TTC and -RSTC Range Table | | Range | Standard Input
Temperature | Equivalent
Counts | Over/Under Range | Equivalent
Counts | Deg C per
Count | |------|-------|---------------------------------------|----------------------|-------------------|----------------------|--------------------| | JTC | 0 | -100°C to +760°C
(Default) | -539 to 4095 | -102°C to +775°C | -550 to 4177 | 0.1855 | | 5 | 1 | -100°C to +393°C | -1078 to 4236 | -102°C to +401°C | -1100 to 4321 | 0.0928 | | | 2 | -100°C to +199°C | -2156 to 4290 | -102°C to +203°C | -2199 to 4376 | 0.0464 | | ပ | 0 | -100°C to +1350°C
(Default) | -303 to 4095 | -102°C to +1377°C | -309 to 4177 | 0.3296 | | KTC | 1 | -100°C to +651°C | -607 to 3950 | -102°C to +664°C | -619 to 4029 | 0.1648 | | | 2 | -100°C to +332°C | -1214 to 4029 | -102°C to +339°C | -1238 to 4110 | 0.0824 | | TTC | 0 | -100°C to +400°C
(Default) | -1024 to 4095 | -102°C to +408°C | -1045 to 4177 | 0.0977 | | - | 1 | -100°C to +220°C | -2048 to 4505 | -102°C to +224°C | -2089 to 4595 | 0.0488 | | | 0 | Type R
0°C to +1750°C
(Default) | 0 to 4095 | -35°C to +1785°C | -82 to 4177 | 0.4272 | | RSTC | 1 | Type R
0°C to +990°C | 0 to 4634 | -20°C to +1010°C | -93 to 4727 | 0.2136 | | % | 2 | Type S
0°C to +1750°C | 0 to 4095 | -35°C to +1785°C | -82 to 4177 | 0.4272 | | | 3 | Type S
0°C to +970°C | 0 to 4541 | -19°C to +989°C | -91 to 4632 | 0.2136 | Table 5: MAQ20-JTC, -KTC, -TTC, -RSTC Special Count Readings | Reading | Condition | |---------|--| | 6000 | Positive Differential Input Exceeded | | -6000 | Open Input, Negative Differential Input Exceeded | | 7000 | Positive Common Mode Exceeded | | -7000 | Negative Common Mode Exceeded | # DATAFORTH WARRANTY Applying to Products Sold by Dataforth Corporation - a. **General**. Dataforth Corporation ("Dataforth") warrants that its products furnished under this Agreement will, at the time of delivery, be free from defects in material and workmanship and will conform to Dataforth's applicable specifications or, if appropriate, to buyer's specifications accepted in writing by Dataforth. DATAFORTH'S OBLIGATION OR LIABILITY TO BUYER FOR PRODUCTS WHICH DO NOT CONFORM TO THE ABOVE STATED WARRANTY SHALL BE LIMITED TO DATAFORTH, AT DATAFORTH'S SOLE DISCRETION, EITHER REPAIRING, REPLACING, OR REFUNDING THE PRICE OF THE DEFECTIVE PURCHASE PRODUCT(S) PROVIDED THAT WRITTEN NOTICE OF SAID DEFECT IS RECEIVED BY DATAFORTH WITHIN THE TIME PERIODS SET FORTH BELOW: - i. for all software products including licensed programs, thirty (30) days from date of initial delivery; - ii. for all hardware products including complete systems, one (1) year from date of initial delivery; - iii. for all special products, sixty (60) days from date of initial delivery; and further, all products warranted hereunder for which Dataforth has received timely notice of nonconformance must be returned FOB to Dataforth's plant in Tucson, Arizona USA within thirty (30) days after the expiration of the warranty periods set forth above. The foregoing warranties shall not apply to any products which Dataforth determines have, by buyer or otherwise, been subjected to operating and/or environmental conditions in excess of the maximum value established therefore in the applicable specifications, or any products that have been the subject of mishandling, misuse, misapplication, neglect, improper testing, repair, alteration or damage. PROVISIONS OF THE FOREGOING WARRANTIES EXTEND TO BUYER ONLY AND NOT TO BUYER'S CUSTOMERS OR USERS OF BUYER'S DATAFORTH STANDARD PRODUCTS. THE WARRANTY IS IN LIEU OF ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE OR USE AND ALL OTHER WARRANTIES WHETHER EXPRESS, IMPLIED OR STATUTORY, EXCEPT AS TO TITLE. THE DATAFORTH STANDARD WARRANTY MAY BE CHANGED BY DATAFORTH WITHOUT NOTICE. b. **Buyer Indemnity**. Buyer agrees to indemnify and hold Dataforth harmless from and against any and all claims, damages and liabilities whatsoever asserted by any person, entity, industry organization, government, or governmental agency of any country resulting directly or indirectly (i) from any acts not authorized by Dataforth in writing or any statements regarding the products inconsistent with Dataforth's product documentation or standard warranty, or (ii) from any breach or threatened breach by buyer, or by any of its employees or agents, of any term, condition or provision of this Warranty or (iii) from any warranty, representation, covenant or obligation given by buyer to any third party and not expressly provided for in this Warranty or (iv) for any non-compliance (in any form) of the products with any necessary or mandatory applicable laws, regulations, procedures, government or industry policies or requirements related to the use, sale or importation of the products. indemnification shall include the payment of all reasonable attorneys' fees and
other costs incurred by Dataforth in defending such claim. #### c. Limitation on Damages. - (1) IN NO EVENT SHALL DATAFORTH, ITS SUPPLIERS, LICENSORS, SERVICE PROVIDERS, EMPLOYEES, AGENTS, OFFICERS, DIRECTORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, COVER, ECONOMIC, PUNITIVE, ACTUAL, EXEMPLARY, CONSEQUENTIAL OR OTHER DAMAGES OF ANY NATURE INCLUDING, WITHOUT LIMITATION. LOST PROFITS OR REPLACEMENT REVENUES. COSTS OF PRODUCTS, LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE ANY DATAFORTH PRODUCT. - (2) IN NO EVENT SHALL DATAFORTH BE LIABLE FOR DIRECT, SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY NATURE RESULTING FROM BUYER'S NONCOMPLIANCE (IN ANY FORM) WITH ALL NECESSARY OR MANDATORY APPLICABLE LAWS, REGULATIONS, PROCEDURES, GOVERNMENT POLICIES OR REQUIREMENTS RELATED TO THE USE, SALE OR IMPORTATION OF PRODUCTS. - (3) IN NO EVENT WILL THE COLLECTIVE LIABILITY DATAFORTH AND ITS SUPPLIERS. LICENSORS, SERVICE PROVIDERS, EMPLOYEES, AGENTS, OFFICERS, AND DIRECTORS TO ANY PARTY (REGARDLESS OF THE FORM OF ACTION, **BASED** WARRANTY, WHETHER UPON CONTRACT, TORT, OR OTHERWISE) EXCEED THE EITHER US\$1000.00 (ONE GREATER OF THOUSAND DOLLARS U.S.A. CURRENCY) OR THE AMOUNT PAID TO DATAFORTH FOR THE APPLICABLE PRODUCT OR SERVICE OUT OF WHICH LIABILITY AROSE. - (4) DATAFORTH'S LIABILITY ARISING OUT OF THE PRODUCTION, SALE OR SUPPLY OF PRODUCTS OR THEIR USE OR DISPOSITION, WHETHER BASED UPON WARRANTY, CONTRACT, TORT OR OTHERWISE, SHALL NOT EXCEED THE GREATER OF EITHER US\$1000.00 (ONE THOUSAND DOLLARS U.S.A. CURRENCY) OR THE ACTUAL PURCHASE PRICE PAID BY BUYER FOR DATAFORTH'S PRODUCTS. DATAFORTH'S LIABILITY FOR ANY CLAIM OF ANY KIND SHALL IN NO CASE EXCEED THE OBLIGATION OR LIABILITY SPECIFIED IN THIS WARRANTY. - d. **Technical Assistance**. Dataforth 's Warranty as hereinabove set forth shall not be enlarged, diminished or affected by, and no obligation or liability shall arise or grow out of, Dataforth's rendering of technical advice, facilities or service in connection with buyer's order of the products furnished hereunder. - Warranty Procedures. Buyer shall notify Dataforth of any products which it believes to be defective during the applicable warranty period and which are covered by the Warranty set forth above. Buyer shall not return any products for any reason without the prior authorization of Dataforth and issuance of a Return Material Authorization ("RMA") number. After issuance of a RMA number, such products shall be promptly returned by buyer (and in no event later than thirty (30) days after the Warranty expiration date), transportation and insurance prepaid, to Dataforth's designated facility for examination and testing. Dataforth shall either repair or replace any such products found to be so defective and promptly return such products to buyer, transportation and insurance prepaid. Should Dataforth's examination and testing not disclose any defect covered by the foregoing Warranty, Dataforth shall so advise buyer and dispose of or return the products in accordance with buyer's instructions and at buyer's sole expense, - and buyer shall reimburse Dataforth for testing expenses incurred at Dataforth's then current repair rates. - f. **Repair Warranty**. Dataforth warrants its repair work and/or replacement parts for a period of ninety (90) days from receipt by buyer of the repaired or replaced products or for the remainder of the warranty period for the initial delivery of such order as set forth in paragraph a above, whichever is greater. - g. Critical Applications. Certain applications using Dataforth's products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). DATAFORTH'S PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS, SAFETY EQUIPMENT, NUCLEAR FACILITY APPLICATIONS OR OTHER CRITICAL APPLICATIONS WHERE MALFUNCTION OF THE PRODUCT CAN BE EXPECTED TO RESULT IN PERSONAL INJURY, DEATH OR SEVERE PROPERTY DAMAGE. BUYER USES OR SELLS SUCH PRODUCTS FOR USE IN SUCH CRITICAL APPLICATIONS AT BUYER'S OWN RISK AND AGREES TO DEFEND, INDEMNIFY AND HOLD HARMLESS DATAFORTH FROM ANY AND ALL DAMAGES, CLAIMS, PROCEEDINGS, SUITS OR EXPENSE RESULTING FROM SUCH USE. - h. <u>Static Sensitive</u>. Dataforth ships all product in anti-static packages. Dataforth's Warranty as hereinabove set forth shall not cover warranty repair, replacement, or refund on product or devices damaged by static due to buyer's failure to properly ground. DATAFORTH * # **Application Support** Dataforth provides timely, high-quality product support. Call 1-800-444-7644 TOLL-FREE. # **Returns/Repair Policy** All warranty and repair requests should be directed to the Dataforth Customer Service Department at (520) 741-1404. If a product return is required, request a Return Material Authorization (RMA) number. You should be ready to provide the following information: - 1. Complete product model number. - 2. Product serial number. - 3. Name, address, and telephone number of person returning product. - 4. Special repair instructions. - 5. Purchase order number for out-of-warranty repairs. The product should be carefully packaged, making sure the RMA number appears on the outside of the package, and ship prepaid to: Dataforth Corporation 3331 E. Hemisphere Loop Tucson, AZ 85706 USA An RMA Request Form and instructions for processing are also found at www.dataforth.com. The information provided herein is believed to be reliable; however, DATAFORTH assumes no responsibility for inaccuracies or omissions. DATAFORTH assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Application information is intended as suggestions for possible use of the products and not as explicit performance in a specific application. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. DATAFORTH does not authorize or warrant any DATAFORTH product for use in life support devices and/or systems. MAQ20-JTC/-KTC/-TTC/-RSTC Hardware User Manual MA1047 Rev. B – January 2014 © 2014 Dataforth Corporation. All Rights Reserved. ISO9001:2008-Registered QMS